
LATTICES IN Sol

W. DISON

Definition 1. Let (G, dg) be a Lie group with a left invariant Riemannian metric.
A subgroup Γ ≤ G is said to be discrete if the induced subset topology on Γ is
discrete. Since dg is left invariant there is an induced metric on the quotient space
G/Γ, where Γ acts on G by left translation. We say that Γ is a lattice in G if Γ is
a discrete subgroup and Vol(G/Γ) is finite.

Note in particular that if Γ ≤ G is a discrete subgroup with G/Γ compact then
Γ is a lattice in G.

Definition 2. By Sol we mean the Lie group R2 o R where t ∈ R acts on R2 as(
et 0
0 e−t

)
, so as multiplication is given by (x1, y1, t1)(x2, y2, t2) = (x1 + et1x2, y1 +

e−t1y2, t1+t2), together with the left invariant Riemannian matric ds2 = e−2tdx2 +
e2tdy2 + dt2.

The metric on Sol is constructed from a collection of trivializing left invariant vec-
tor fields as follows. Consider the three curves R→ Sol given by γ1 : s 7→ (s, 0, 0),
γ2 : s 7→ (0, s, 0) and γ3 : s 7→ (0, 0, s). These have tangent vectors ∂γ1

∂s = ∂
∂x ,

∂γ2
∂s = ∂

∂y and ∂γ3
∂s = ∂

∂t at (0, 0, 0) respectively, and these span the tangent space at
that point. The left action of the group on these vectors gives a collection of three
left invariant vector fields X1, X2 and X3 which form a basis for the tangent space at
each point. (x, y, t)γ1 : s 7→ (x+ets, y, t) so X1(x, y, t) = ∂

∂s{(x, y, t)γ1}|s=0 = et ∂
∂x .

Similarly (x, y, t)γ2 : s 7→ (x, y + e−ts, t) so X2(x, y, t) = ∂
∂s{(x, y, t)γ2}|s=0 =

−e−t ∂
∂y and (x, y, t)γ3 : s 7→ (x, y, t + s) so X3(x, y, t) = ∂

∂s{(x, y, t)γ3}|s=0 = ∂
∂t .

We construct the metric to be orthogonal at every point with respect to these
vector fields. Thus ( ∂

∂x |(x,y,t),
∂
∂x |(x,y,t)) = (e−tX1(x, y, t), e−tX1(x, y, t)) = e−2t,

( ∂
∂y |(x,y,t),

∂
∂y |(x,y,t)) = (−etX2(x, y, t),−etX2(x, y, t)) = e2t and ( ∂

∂t |(x,y,t),
∂
∂t |(x,y,t)) =

(X3(x, y, t), X3(x, y, t)) = 1 and so we obtain the metric given above.

Proposition 3. Let A ∈ SL2(Z). Suppose that A is conjugate in GL2(R) to
a matrix of the form

(
λ 0
0 λ−1

)
for some λ 6= 1. Then there is a quasi-isometric

embedding Z2 oA Z ↪→ Sol and the image is a lattice. In particular if A and B are
both matrices of the above form then Z2 oA Z is quasi-isometric to Z2 oB Z.

Note that by Z2oAZ we mean the semidirect product where t ∈ Z acts on Z2 as
At so as multiplication is given by (x1, y1, t1)(x2, y2, t2) = ((x1, y1)+A(x2, y2), t1 +
t2).

Proof. By assumption there exists P ∈ GL2(R) such that PAP−1 =
(

λ 0
0 λ−1

)
and

s ∈ R \ {0} such that
(

λ 0
0 λ−1

)
=

(
es 0
0 e−s

)
. Define the embedding by (x, y, t) 7→

(P (x, y), st) and note that since s 6= 0 and P is nonsingular this is an injec-
tion. The following calculation demonstrates that this gives a homomorphism:
(x1, y1, t1)(x2, y2, t2) = ((x1, y1)+At1(x2, y2), t1+t2) 7→ (P (x1, y1)+PAt1(x2, y2), s(t1+
t2)) = (P (x1, y1)+

(
es 0
0 e−s

)t1
P (x2, y2), st1+st2) = P (x1, y1)+

(
est1 0
0 e−st1

)
P (x2, y2), st1+

st2) = (P (x1, y1), st1)(P (x2, y2), st2). The quotient of Sol by Z2oAZ is a T2 bundle
over S1 so is compact. Thus Z2 oA Z is indeed a lattice in Sol .
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We now show that the action of Z2 oA Z on Sol is proper. Thus let p =
(X, Y, T ) ∈ Sol and let γ = (γ1, γ2, γ3) ∈ (Z2 oA Z) \ {1}. Then γp = (P (γ1, γ2) +
(eγ3X, e−γ3Y ), sγ3 + T ). If γ3 6= 0 then d(p, γp) ≥ |s| ≥ 0. If γ3 = 0 then
γp = (P (γ1, γ2) + (X,Y ), T ) and both p and γp lie in the same horizontal plane
t = T on which the metric restricts to ds2 = e−2T dx2 + e2T dy2 + dt2. In this
case let µ = min{e−2T , e2T } > 0 and let K = inf‖(x,y)‖2=1 ‖P (x, y)‖2 > 0. Then
d(p, γp) ≥ µK‖(γ1, γ2)‖2 and since γ 6= 1 (γ1, γ2) 6= (0, 0) so d(p, γp) ≥ µK. We
have thus shown that for all γ ∈ Z2 oA Z with γ 6= 1, d(p, γp) ≥ min{s, µK} > 0.
Hence the action of Z2 oA Z on Sol is proper. Since the action is also cocompact
the Svarc-Milnor Lemma says that the embedding is a quasi-isometry. ¤

Proposition 4. The vertical planes in Sol given by x = c or y = c for some c ∈ R
are isometric to the hyperbolic plane H2.

Proof. Fix c ∈ R and consider the plane P given by x = c. The metric on Sol
restricts to e2tdy2 + dt2 on P and there is a bijection P → H2 given by (c, y, t) 7→
(y, e−t). To see that this is an isometry consider the change of variable t′ = e−t, so
as dt′ = −e−tdt. With respect to these new coordinates the metric on P is given
by e2tdy2 + dt2 = dy2+(−e−t)2dt2

e−2t = dy2+dt′2

t′2 which is the hyperbolic metric.
The case y = c is similar with the isometry given by (x, c, t) 7→ (x, et). ¤

Definition 5. Let Y be a metric space and X be a subspace with the induced length
metric. The distortion function of X in Y is Dist(n) = sup{dX(a, b)|dY (a, b) ≤ n}.
Definition 6. A horocycle in H2 is a subspace which, in the upper half plane model
of H2, is either a Euclidean circle tangent to the x-axis or is a horizontal line (i.e.
a Euclidean circle tangent to the boundary of H2 at infinity at infinity).

Lemma 7. The distortion of a horocycle in H2 is θ(n) ∼ en (i.e. θ(n)
en → 1). [No

proof]

Proposition 8. The distortion of a horizontal plane P in Sol is φ(n) ' en, where
' is the equivalence of functions associated to Dehn functions.

Proof. Since the metric on Sol is left invariant we can assume, by left translating,
that P is the horizontal plane through the origin.

To prove the lower bound define pn = (n, 0, 0) ∈ Sol for n ∈ R+. This lies
in the vertical hyperbolic plane Q = {(x, 0, t)|x, t ∈ R}. Note that the subspace
{(x, 0, 0)| ∈ R} is a horocycle in Q, so by the lemma there exists A such that
dSol(0, pn) = dQ(0, pn) ≤ A log(n). But dP (0, pn) = n since the metric restricted to
P is ds2 = dx2+dy2, so P is isometric to the Euclidean plane. Thus θ(A log(n)) ≥ n
and so θ(n) ≥ en/A.

To prove the upper bound let p = (p1, p2, 0) ∈ P with dSol(0, p) ≤ n. Say γ
is a geodesic joining 0 to p in Sol , so |γ| ≤ n. Let Q1 and Q2 be the vertical
hyperbolic planes {(x, 0, t)|x, t ∈ R} and {(0, y, t)|y, t ∈ R} respectively. Note that
under the isometries of Q1 and Q2 with H2 given in proposition 4 the subspaces
L1 := {(x, 0, 0)|x ∈ R} ⊆ Q1 and L2 := {(0, y, 0)|y ∈ R} ⊆ Q2 both correspond to
the same horocycle. Thus there exists B ≥ 1 such that the distortion functions θ1

and θ2 of L1 in Q1 and L2 in Q2 respectively satisfy θ1(n), θ2(n) ≤ Ben. Let γ1

and γ2 be the projections of γ onto Q1 and Q2 respectively, and note that |γ1| and
|γ2| ≤ |γ| ≤ n. Thus dQ1((0, 0, 0), (p1, 0, 0)) ≤ n and dQ2((0, 0, 0), (0, p2, 0)) ≤ n

and so p1 and p2 ≤ Ben. Hence dP (0, p) ≤ √
2Ben and we have φ(n) ≤ √

2Ben. ¤

Definition 9. Let M be a complete Riemannian manifold. Given c : S1 → M
a null-homotopic, rectifiable loop, define the filling area of c to be FArea(c) =
inf{Area(f)|f : D2 → M lipschitz, ∂f = c}. Then the isoperimetric function of M
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is defined to be FillM (l) = sup{FArea(c)|c : S1 → M null− homotopic, recifiable, |c| ≤
l}.
Proposition 10. Let f : M1 → M2 be a quasi-isometry between complete Rie-
mannian manifolds. Then FillM1 ' FillM2 . [No proof]

Proposition 11. A geodesic metric space is δ-hyperbolic if and only if it has a
linear isoperimetric function. In particular FillH2 is linear. [No proof]

Proposition 12. Sol has exponential isoperimetric function.

To prove this we need the following result.

Lemma 13. Let G be a Lie group with a left-invariant Riemannian metric and let
ω be a left-invariant 2-form on G. Let σ : D2 → G be an immersed 2-cell. Then
there exists K > 0 such that

∫
σ

ω ≤ KArea(σ). [Specifically K = ‖ω‖.] [No proof]

Proof of proposition 12. We only prove a lower bound.
We construct an exact left-invariant 2-form on Sol from the left-invariant vector

fields X1, X2, X3 defined above. Let X1, X2, X3 be the left-invariant 1-forms dual
to these, namely e−tdx, etdy and dt. Then let ω = X1∧X2 = dx∧dy. l∗g(X1∧X2) =
l∗g(X1) ∧ l∗g(X2) = X1 ∧X2 so this form is indeed left-invariant. d(dx ∧ dy) = 0 so
ω is closed, and since H2(Sol) = H2(R3) = 0 ω is exact.

For l ∈ R+ we construct a loop cl : S1 → Sol as follows. Let p1 = ( 1
2 l, 1

2 l, 0), p2 =
( 1
2 l,− 1

2 l, 0), p3 = (− 1
2 l,− 1

2 l, 0), p4 = (− 1
2 l, 1

2 l, 0), i.e. the points at the four corners
of a square of side length l in the horizontal plane in Sol through 0. Let Qi be the
vertical hyperbolic plane containing pi and pi+1 (addition taken modulo 4). Let γi

be the hyperbolic geodesic in Qi joining pi to pi+1. Let cl be the concatenation of
γ1, . . . , γ4. By lemma 7 there exits A such that |cl| ≤ A log(l) for all l. We will
show that there exits K > 0 such that FArea(cl) ≥ Kl2.

By lemma 13 there exist K > 0 such that the area of any filling disc σ for
cl is bounded below by K

∫
σ

ω. But since ω is exact the value of this integral is
independent of the disc chosen, so FArea(cl) is bounded below by K

∫
σ

ω for any
choice of filling disc σ. We construct a choice of disc for which it is easy to evaluate
the integral. Let H be the horizontal plane in Sol through 0. For 1 ≤ i ≤ 4 let σi

be the 2-disc in Qi bounded by γi and Qi ∩H. Let σ′ be the 2-disc in H bounded
by the four lines Qi ∩H. The union of these five discs σ1, σ2, σ3, σ4 and σ′ gives a
filling disc for cl consisting of a horizontal square of side length l and four vertical
flaps. We now calculate

∫
σ

ω. ω pulls back to 0 on each σi so
∫

σi
ω = 0. On σ′ ω is

the Euclidean form dx ∧ dy so
∫

σ′ ω = l2. Thus
∫

σ
ω = l2 and so FArea(cl) ≥ Kl2.

Hence FillSol(A log(l)) ≥ Kl2 so FillSol(l) ≥ Ke2l/A. ¤
Corollary 14. Let A ∈ SL2(Z) with A conjugate in GL2(R) to a matrix of the
form

(
λ 0
0 λ−1

)
for some λ > 1. Then Z2 oA Z has exponential Dehn function.

Proof. Proposition 3 showed that Z2oAZ is a lattice in Sol and acts on it properly
and cocompactly by left translation. Since the action is also free it is a covering
space action and so we have that Sol is the universal cover of a compact manifold
M with Π1(M) ∼= Z2 oA Z. By the Filling Theorem δZ2oAZ ' FillM ' FillfM =
FillSol . ¤

The main result of the lectures is the following theorem on the quasi-rigidity of
lattices in Sol .

Theorem 15. Let Γ be a finitely generated group quasi-isometric to Sol. Then there
exists K C Γ with |K| finite such that Z2 oA Z ≤f.i. Γ/K for some A ∈ SL2(Z)
with A conjugate in GL2(R) to a matrix of the form

(
λ 0
0 λ−1

)
for some λ > 1.
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To begin the proof of this result we require the following definitions.

Definition 16. For t′ ∈ R let Pt′ ⊆ Sol be the horizontal plane {(x, y, t)|t = t′}.
Then a quasi-geodesic γ : R→ Sol is said to be vertical if there exists M such that
diam(γ ∩ Pt) ≤ M for all t ∈ R. A vertical quasi-geodesic ray is defined similarly.

By a vertical geodesic (respectively a vertical geodesic ray) in Sol we mean a
geodesic R→ Sol (respectively a geodesic ray [0,∞) → Sol) of the form t 7→ (x, y, t)
or t 7→ (x, y,−t) for some x, y ∈ R.

Definition 17. Let X be a metric space. Then the Hausdorff distance between
two sets A,B ⊆ X is dH(A, B) = inf{ε|A ⊆ Nε(B), B ⊆ Nε(A)}, where Nε is the
ε-neighbourhood of a set.

Definition 18. Let X be a metric space and γ1, γ2 : [0,∞) → X be geodesic rays.
We say that γ1 is asymptotic to γ2 if there exists M such that d(γ1(t), γ2(t)) ≤ M
for all t ∈ [0,∞). It can be shown that this is equivalent to the Hausdorff distance
between the images of γ1 and γ2 being finite.

Now let γ1, γ2 : [0,∞) → X be quasi-geodesic rays. We say that γ1 and γ2

are asymptotic if dH(im(γ1), im(γ2)) is finite. [Note that this is not equivalent to
d(γ1(t), γ2(t)) being bounded.]

We write γ1 ∼ γ2 if γ1 and γ2 are asymptotic (quasi-)geodesic rays.

Note that quasi-isometries preserve the asymptoticity of quasi-geodesic rays.

Proposition 19. Let γ be a vertical quasi-geodesic ray in Sol . Then there exists
ε and a vertical geodesic ray γ such that dH(γ, γ) ≤ ε, i.e. every vertical quasi-
geodesic is asymptotic to a vertical geodesic.

Proof. *************************** ¤

Proposition 20. Let f : Sol → Sol be a quasi-isometry, and let γ be a vertical
quasi-geodesic ray. Then fγ is a vertical quasi-geodesic ray.

Proof. *************************************** ¤

Definition 21. Let X be a metric space. Define the boundary ∂X of X to be the
collection of geodesic rays in X modulo the equivalence relation γ1 ∼ γ2 if γ1 and
γ2 are asymptotic.

We now introduce the following subspaces of ∂Sol . Let ∂USol be the collection
of vertical geodesic rays (modulo asymptoticity) of the form t 7→ (x, y, t) for some
x, y ∈ R. Similarly define ∂LSol to be the collection of vertical geodesic rays of the
form t 7→ (x, y,−t). Note that by proposition 19 ∂USol ∪ ∂LSol is equivalent to
the collection of vertical quasi-geodesic rays modulo asymptoticity. Furthermore, by
proposition 20, a quasi-isometry f : Sol → Sol induces a map f∂ : ∂USol ∪∂LSol →
∂USol ∪ ∂LSol .

Consider two vertical geodesic rays lying in the same (x, t)-plane, i.e. of the form
γ1 : t 7→ (x1, y, t) and γ2 : t 7→ (x2, y, t) for some fixed x1, x2, y ∈ R. The metric
on the plane is e−2tdx2 + dt2 so d(γ1(t), γ2(t)) = e−2t ≤ 1 for all t ∈ [0,∞) and
hence γ1 ∼ γ2. Conversely suppose that two vertical geodesic rays lie in the same
(y, t)-plane, i.e. that they are of the form γ1 : t 7→ (x, y1, t) and γ2 : t 7→ (x, y2, t)
for some fixed x, y1, y2 ∈ R. Now the metric on this plane is e2tdy2 + dt2 so
d(γ1(t), γ2(t)) = e2t which is unbounded. Hence γ1 and γ2 are not asymptotic. It
follows that ∂USol is identifiable with the collection of (x, t)-planes in Sol , which
are indexed by R, and hence is isometric to R. Similarly ∂LSol is also isometric
to R. Since an ’upward’ and a ’downward’ geodesic ray are not asymptotic, ∂USol
and ∂LSol are disjoint, and so their union is isometric to R t R.
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Definition 22. Let X,Y be metric spaces. If f : X → Y is a quasi-isometry then
there exists a quasi-isometry f−1 : Y → X, called a quasi-inverse to f , such that
there exists ε so as dX(x, f−1f(x)) ≤ ε for all x ∈ X and dY (y, ff−1(y)) ≤ ε for all
y ∈ Y .

Let ∼ be the equivalence relation on the set of quasi-isometries X → X given
by f ∼ g if there exists ε such that d(f(x), g(x)) ≤ ε for all x ∈ X. Then the quasi-
isometry group of X, written QI(X), is defined to be this set of quasi-isometries
modulo ∼.

We have shown that a quasi-isometry Sol → Sol induces a map f∂ : R t R →
R t R. Note that if f1, f2 are quasi-isometries Sol → Sol with f1 ∼ f2 and γ
is a vertical quasi-geodesic then f1(γ) and f2(γ) are asymptotic, so in fact each
f ∈ QI(Sol) induces a map f∂ : R t R→ R t R. ********We can show that f∂ is
continuous.************** Now let f−1 be the quasi-inverse to f ∈ QI(Sol) and
let γ be a vertical quasi-geodesic. Then there exists ε such that d(ff−1(x), x) ≤ ε
and d(f−1f(x), x) ≤ ε for all x ∈ Sol . Thus f−1f(γ) ∼ γ ∼ ff−1(γ) and so (f−1)∂

is an inverse to f∂ in C(R). f∂ is therefore a homeomorphism of RtR, and we have
shown that there exist a homomorphism QI(Sol) → Homeo(R t R).

Definition 23. A quasi-action of a finitely generated group G on a metric space
X is a homomorphism G → QI(X).

Lemma 24. Let Γ be a finitely generated group quasi-isometric to a metric space
X. Then there exists a quasi-action γ 7→ qγ of Γ on X. Furthermore there exists
λ ≥ 1 and ε ≥ 0 such that qγ is a (λ, ε)-quasi-isometry for all γ ∈ Γ.

Proof. Let θ : Γ → X be the hypothesized quasi-isometry. Then for γ ∈ Γ let
qγ = θLγθ−1 where Lγ : Γ → Γ is left multiplication by γ. Since Lγ is an isometry,
and hence trivially a quasi-isometry, qγ ∈ QI(X). If γ1, γ2 ∈ Γ then qγ1γ2 =
fLγ1γ2f

−1 = fLγ1Lγ2f
−1 ∼ fLγ1f

−1fLγ2f
−1 = qγ1qγ2 so we do indeed have a

quasi-action. If f−1 is a (λ1, ε1)-quasi-isometry and f is a (λ2, ε2)-quasi-isometry
then qγ is a (λ2λ1, λ2ε1 + ε2)-quasi-isometry for each γ. ¤

Applying this construction to the quasi-isometry given in the hypothesis of the
theorem, we obtain quasi-action of Γ on Sol which can be shown to have the fol-
lowing two properties:

Co-compactness: There exists C ∈ R such that for all x ∈ Sol there exists
γ ∈ Γ with d(x, qγ(0)) ≤ C, where 0 is the point (0, 0, 0) ∈ Sol .

Proper discontinuity: For all x ∈ Sol and for all C ≥ 0, |{γ ∈ Γ|d(qγ(x), x) ≤
C}| is finite.

We showed above that there exists a homomorphism QI(Sol) → Homeo(RtR),
and so by composition we have a homomorphism Ψ : Γ → Homeo(RtR). Now, by
passing to an index 2 subgroup if necessary (which will not affect the conclusion
of the theorem), we can assume that Ψ(γ) fixes each component of R t R for each
γ ∈ Γ. Thus we have Ψ : Γ → Homeo(R)2.

Definition 25. f ∈ Homeo(R) is a quasi-symmetric homeomorphism if there exists
K ≥ 1 such that for all x, y ∈ R

K−1 ≤ |f(x)− f(z)|
|f(x)− f(y)| ≤ K

where z is the midpoint of x and y.
A subgroup H ≤ Homeo(R) of quasi-symmetric homeomorphisms is uniform if

there is such a constant K which holds for all h ∈ H.
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Proposition 26. Let f : Sol → Sol be a (λ, ε)-quasi-isometry, and let (f1
∂ , f2

∂ ) ∈
Homeo(R)2 be the induced homeomorphism. Then f1

∂ and f2
∂ are quasi-symmetric

with constant depending only on λ and ε.

Proof. ********************** ¤
It follows that the image of Γ in Homeo(R)2 is the direct product of two uniform

groups of quasi-symmetric homeomorphisms.

Theorem 27 (Hinkkanen). If H ≤ Homeo(R) is a uniform group of quasi-symmetric
homeomorphisms then there exists a quasi-symmetric homeomorphism ρ ∈ Homeo(R)
such that ρHρ−1 ≤ Aff(R). [No proof]

Thus by composing with a conjugation we can assume that Ψ : Γ → Aff(R)2.

Lemma 28. | ker(Ψ)| is finite.

Proof. Ψ is constructed as a composition of homomorphisms

Γ → QI(Sol) → Homeo(R)2 → Homeo(R)2.

The last of these, since it is a conjugation, is an isomorphism, so it suffices to prove
that the composition of the first two homomorphisms has finite kernel.

Let g ∈ kerΨ. Fix a vertical hyperbolic plane H2 ⊆ Sol , and choose a point
c ∈ H2 and two geodesic rays γ1, γ2 : [0,∞) → H2 with γi(0) = c and γ1 and
γ2 representing different boundary points in ∂H2. Since g ∈ kerΨ, qg fixes the
boundary of Sol and hence of H2, so there exists K such that dH(qgγ1, γ1) ≤ K
and dH(qgγ2, γ2) ≤ K. Hence there exist x1 and x2 such that d(qgγ1(0), γ1(x1)) ≤
K and d(qgγ2(0), γ2(x2)) ≤ K, and thus d(γ1(x1), γ2(x2)) ≤ 2K. Choose M ∈
R such that g(γ1(x), γ2(y)) > 2K for all x, y ≥ M . Then x1, x2 < M . Thus
d(qgγ1(0), γ(0)) ≤ d(qgγ1(0), γ1(x1)) + d(γ1(x1), γ1(0)) ≤ K + M . But the quasi-
action of Γ on Sol is properly-discontinuous, so there are only a finite number of
g ∈ Γ which satisfy such an inequality. ¤

Thus we have that Γ/K ≤ Aff(R)2 for some finite K. Since Aff(R) is soluble so
is Aff(R)2 and hence Γ/K.

Definition 29. A group G is a Poincaré duality group if it has a finite dimensional
K(G, 1), say of dimension n, and Hi(G) ∼= Hn−i(G) for 0 ≤ i ≤ n.

Theorem 30. Let G be a soluble Poincaré duality group. Then G is virtually
polycyclic. [No proof]

Theorem 31 (Gerston). The Poincaré duality property of groups is an invariant
of quasi-isometry. [No proof]

We want to show that Γ/K has the poincaré duality property. To see this choose
A =

(
2 0
0 1

2

)
, say, so as Z2oAZ is quasi-isometric to Sol , and hence to Γ, and hence,

since |K| is finite, to Γ/K. The action of Z2 oA Z on Sol by left translation is
a covering space action, and Sol is simply connected, so by quotienting we obtain
a K(Z2 oA Z, 1) space M . Since Sol is a 3-manifold so is M , and so Poincaré
duality gives that Hi(M) ∼= H3−i(M) for 0 ≤ i ≤ 3. It follows that Z2 oA Z has
the Poincaré duality property, and hence by theorem 31 so does Γ/K. We deduce
that Γ/K is virtually polycyclic.*****************Now consider Hirsch length and
growth rates. This complete the proof of theorem 15.


