LATTICES IN Sol

W. DISON

Definition 1. Let $(G, d g)$ be a Lie group with a left invariant Riemannian metric. A subgroup $\Gamma \leq G$ is said to be discrete if the induced subset topology on Γ is discrete. Since $d g$ is left invariant there is an induced metric on the quotient space G / Γ, where Γ acts on G by left translation. We say that Γ is a lattice in G if Γ is a discrete subgroup and $\operatorname{Vol}(G / \Gamma)$ is finite.

Note in particular that if $\Gamma \leq G$ is a discrete subgroup with G / Γ compact then Γ is a lattice in G.

Definition 2. By Sol we mean the Lie group $\mathbb{R}^{2} \rtimes \mathbb{R}$ where $t \in \mathbb{R}$ acts on \mathbb{R}^{2} as $\left(\begin{array}{cc}e^{t} & 0 \\ 0 & e^{-t}\end{array}\right)$, so as multiplication is given by $\left(x_{1}, y_{1}, t_{1}\right)\left(x_{2}, y_{2}, t_{2}\right)=\left(x_{1}+e^{t_{1}} x_{2}, y_{1}+\right.$ $\left.e^{-t_{1}} y_{2}, t_{1}+t_{2}\right)$, together with the left invariant Riemannian matric $d s^{2}=e^{-2 t} d x^{2}+$ $e^{2 t} d y^{2}+d t^{2}$.

The metric on $S o l$ is constructed from a collection of trivializing left invariant vector fields as follows. Consider the three curves $\mathbb{R} \rightarrow$ Sol given by $\gamma_{1}: s \mapsto(s, 0,0)$, $\gamma_{2}: s \mapsto(0, s, 0)$ and $\gamma_{3}: s \mapsto(0,0, s)$. These have tangent vectors $\frac{\partial \gamma_{1}}{\partial s}=\frac{\partial}{\partial x}$, $\frac{\partial \gamma_{2}}{\partial s}=\frac{\partial}{\partial y}$ and $\frac{\partial \gamma_{3}}{\partial s}=\frac{\partial}{\partial t}$ at $(0,0,0)$ respectively, and these span the tangent space at that point. The left action of the group on these vectors gives a collection of three left invariant vector fields X_{1}, X_{2} and X_{3} which form a basis for the tangent space at each point. $(x, y, t) \gamma_{1}: s \mapsto\left(x+e^{t} s, y, t\right)$ so $X_{1}(x, y, t)=\left.\frac{\partial}{\partial s}\left\{(x, y, t) \gamma_{1}\right\}\right|_{s=0}=e^{t} \frac{\partial}{\partial x}$. Similarly $(x, y, t) \gamma_{2}: s \mapsto\left(x, y+e^{-t} s, t\right)$ so $X_{2}(x, y, t)=\left.\frac{\partial}{\partial s}\left\{(x, y, t) \gamma_{2}\right\}\right|_{s=0}=$ $-e^{-t} \frac{\partial}{\partial y}$ and $(x, y, t) \gamma_{3}: s \mapsto(x, y, t+s)$ so $X_{3}(x, y, t)=\left.\frac{\partial}{\partial s}\left\{(x, y, t) \gamma_{3}\right\}\right|_{s=0}=\frac{\partial}{\partial t}$. We construct the metric to be orthogonal at every point with respect to these vector fields. Thus $\left(\left.\frac{\partial}{\partial x}\right|_{(x, y, t)},\left.\frac{\partial}{\partial x}\right|_{(x, y, t)}\right)=\left(e^{-t} X_{1}(x, y, t), e^{-t} X_{1}(x, y, t)\right)=e^{-2 t}$, $\left(\left.\frac{\partial}{\partial y}\right|_{(x, y, t)},\left.\frac{\partial}{\partial y}\right|_{(x, y, t)}\right)=\left(-e^{t} X_{2}(x, y, t),-e^{t} X_{2}(x, y, t)\right)=e^{2 t}$ and $\left(\left.\frac{\partial}{\partial t}\right|_{(x, y, t)},\left.\frac{\partial}{\partial t}\right|_{(x, y, t)}\right)=$ $\left(X_{3}(x, y, t), X_{3}(x, y, t)\right)=1$ and so we obtain the metric given above.
Proposition 3. Let $A \in S L_{2}(\mathbb{Z})$. Suppose that A is conjugate in $G L_{2}(\mathbb{R})$ to a matrix of the form $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ for some $\lambda \neq 1$. Then there is a quasi-isometric embedding $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z} \hookrightarrow$ Sol and the image is a lattice. In particular if A and B are both matrices of the above form then $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ is quasi-isometric to $\mathbb{Z}^{2} \rtimes_{B} \mathbb{Z}$.

Note that by $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ we mean the semidirect product where $t \in \mathbb{Z}$ acts on \mathbb{Z}^{2} as A^{t} so as multiplication is given by $\left(x_{1}, y_{1}, t_{1}\right)\left(x_{2}, y_{2}, t_{2}\right)=\left(\left(x_{1}, y_{1}\right)+A\left(x_{2}, y_{2}\right), t_{1}+\right.$ t_{2}).
Proof. By assumption there exists $P \in G L_{2}(\mathbb{R})$ such that $P A P^{-1}=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and $s \in \mathbb{R} \backslash\{0\}$ such that $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)=\left(\begin{array}{cc}e^{s} & 0 \\ 0 & e^{-s}\end{array}\right)$. Define the embedding by $(x, y, t) \mapsto$ $(P(x, y), s t)$ and note that since $s \neq 0$ and P is nonsingular this is an injection. The following calculation demonstrates that this gives a homomorphism: $\left(x_{1}, y_{1}, t_{1}\right)\left(x_{2}, y_{2}, t_{2}\right)=\left(\left(x_{1}, y_{1}\right)+A^{t_{1}}\left(x_{2}, y_{2}\right), t_{1}+t_{2}\right) \mapsto\left(P\left(x_{1}, y_{1}\right)+P A^{t_{1}}\left(x_{2}, y_{2}\right), s\left(t_{1}+\right.\right.$ $\left.\left.t_{2}\right)\right)=\left(P\left(x_{1}, y_{1}\right)+\left(\begin{array}{cc}e^{s} & 0 \\ 0 & e^{-s}\end{array}\right)^{t_{1}} P\left(x_{2}, y_{2}\right), s t_{1}+s t_{2}\right)=P\left(x_{1}, y_{1}\right)+\left(\begin{array}{cc}e^{s t_{1}} & 0 \\ 0 & e^{-s t_{1}}\end{array}\right) P\left(x_{2}, y_{2}\right), s t_{1}+$ $\left.s t_{2}\right)=\left(P\left(x_{1}, y_{1}\right), s t_{1}\right)\left(P\left(x_{2}, y_{2}\right), s t_{2}\right)$. The quotient of $S o l$ by $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ is a \mathbb{T}^{2} bundle over S^{1} so is compact. Thus $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ is indeed a lattice in $S o l$.

We now show that the action of $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ on $S o l$ is proper. Thus let $p=$ $(X, Y, T) \in$ Sol and let $\gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in\left(\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}\right) \backslash\{1\}$. Then $\gamma p=\left(P\left(\gamma_{1}, \gamma_{2}\right)+\right.$ $\left.\left(e^{\gamma_{3}} X, e^{-\gamma_{3}} Y\right), s \gamma_{3}+T\right)$. If $\gamma_{3} \neq 0$ then $d(p, \gamma p) \geq|s| \geq 0$. If $\gamma_{3}=0$ then $\gamma p=\left(P\left(\gamma_{1}, \gamma_{2}\right)+(X, Y), T\right)$ and both p and γp lie in the same horizontal plane $t=T$ on which the metric restricts to $d s^{2}=e^{-2 T} d x^{2}+e^{2 T} d y^{2}+d t^{2}$. In this case let $\mu=\min \left\{e^{-2 T}, e^{2 T}\right\}>0$ and let $K=\inf _{\|(x, y)\|_{2}=1}\|P(x, y)\|_{2}>0$. Then $d(p, \gamma p) \geq \mu K\left\|\left(\gamma_{1}, \gamma_{2}\right)\right\|_{2}$ and since $\gamma \neq 1\left(\gamma_{1}, \gamma_{2}\right) \neq(0,0)$ so $d(p, \gamma p) \geq \mu K$. We have thus shown that for all $\gamma \in \mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ with $\gamma \neq 1, d(p, \gamma p) \geq \min \{s, \mu K\}>0$. Hence the action of $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ on $S o l$ is proper. Since the action is also cocompact the Svarc-Milnor Lemma says that the embedding is a quasi-isometry.

Proposition 4. The vertical planes in Sol given by $x=c$ or $y=c$ for some $c \in \mathbb{R}$ are isometric to the hyperbolic plane \mathbb{H}^{2}.

Proof. Fix $c \in \mathbb{R}$ and consider the plane P given by $x=c$. The metric on Sol restricts to $e^{2 t} d y^{2}+d t^{2}$ on P and there is a bijection $P \rightarrow \mathbb{H}^{2}$ given by $(c, y, t) \mapsto$ $\left(y, e^{-t}\right)$. To see that this is an isometry consider the change of variable $t^{\prime}=e^{-t}$, so as $d t^{\prime}=-e^{-t} d t$. With respect to these new coordinates the metric on P is given by $e^{2 t} d y^{2}+d t^{2}=\frac{d y^{2}+\left(-e^{-t}\right)^{2} d t^{2}}{e^{-2 t}}=\frac{d y^{2}+d t^{\prime 2}}{t^{\prime 2}}$ which is the hyperbolic metric.

The case $y=c$ is similar with the isometry given by $(x, c, t) \mapsto\left(x, e^{t}\right)$.
Definition 5. Let Y be a metric space and X be a subspace with the induced length metric. The distortion function of X in Y is $\operatorname{Dist}(n)=\sup \left\{d_{X}(a, b) \mid d_{Y}(a, b) \leq n\right\}$.

Definition 6. A horocycle in \mathbb{H}^{2} is a subspace which, in the upper half plane model of \mathbb{H}^{2}, is either a Euclidean circle tangent to the x-axis or is a horizontal line (i.e. a Euclidean circle tangent to the boundary of \mathbb{H}^{2} at infinity at infinity).

Lemma 7. The distortion of a horocycle in \mathbb{H}^{2} is $\theta(n) \sim e^{n}$ (i.e. $\frac{\theta(n)}{e^{n}} \rightarrow 1$). [No proof]

Proposition 8. The distortion of a horizontal plane P in Sol is $\phi(n) \simeq e^{n}$, where $\simeq i s$ the equivalence of functions associated to Dehn functions.

Proof. Since the metric on Sol is left invariant we can assume, by left translating, that P is the horizontal plane through the origin.

To prove the lower bound define $p_{n}=(n, 0,0) \in S o l$ for $n \in \mathbb{R}_{+}$. This lies in the vertical hyperbolic plane $Q=\{(x, 0, t) \mid x, t \in \mathbb{R}\}$. Note that the subspace $\{(x, 0,0) \mid \in \mathbb{R}\}$ is a horocycle in Q, so by the lemma there exists A such that $d_{S o l}\left(0, p_{n}\right)=d_{Q}\left(0, p_{n}\right) \leq A \log (n)$. But $d_{P}\left(0, p_{n}\right)=n$ since the metric restricted to P is $d s^{2}=d x^{2}+d y^{2}$, so P is isometric to the Euclidean plane. Thus $\theta(A \log (n)) \geq n$ and so $\theta(n) \geq e^{n / A}$.

To prove the upper bound let $p=\left(p_{1}, p_{2}, 0\right) \in P$ with $d_{\text {Sol }}(0, p) \leq n$. Say γ is a geodesic joining 0 to p in $S o l$, so $|\gamma| \leq n$. Let Q_{1} and Q_{2} be the vertical hyperbolic planes $\{(x, 0, t) \mid x, t \in \mathbb{R}\}$ and $\{(0, y, t) \mid y, t \in \mathbb{R}\}$ respectively. Note that under the isometries of Q_{1} and Q_{2} with \mathbb{H}^{2} given in proposition 4 the subspaces $L_{1}:=\{(x, 0,0) \mid x \in \mathbb{R}\} \subseteq Q_{1}$ and $L_{2}:=\{(0, y, 0) \mid y \in \mathbb{R}\} \subseteq Q_{2}$ both correspond to the same horocycle. Thus there exists $B \geq 1$ such that the distortion functions θ_{1} and θ_{2} of L_{1} in Q_{1} and L_{2} in Q_{2} respectively satisfy $\theta_{1}(n), \theta_{2}(n) \leq B e^{n}$. Let γ_{1} and γ_{2} be the projections of γ onto Q_{1} and Q_{2} respectively, and note that $\left|\gamma_{1}\right|$ and $\left|\gamma_{2}\right| \leq|\gamma| \leq n$. Thus $d_{Q_{1}}\left((0,0,0),\left(p_{1}, 0,0\right)\right) \leq n$ and $d_{Q_{2}}\left((0,0,0),\left(0, p_{2}, 0\right)\right) \leq n$ and so p_{1} and $p_{2} \leq B e^{n}$. Hence $d_{P}(0, p) \leq \sqrt{2} B e^{n}$ and we have $\phi(n) \leq \sqrt{2} B e^{n}$.
Definition 9. Let M be a complete Riemannian manifold. Given $c: S^{1} \rightarrow M$ a null-homotopic, rectifiable loop, define the filling area of c to be FArea $(c)=$ $\inf \left\{\operatorname{Area}(f) \mid f: D^{2} \rightarrow M\right.$ lipschitz, $\left.\partial f=c\right\}$. Then the isoperimetric function of M
is defined to be $\operatorname{Fill}_{M}(l)=\sup \left\{\right.$ FArea $(c) \mid c: S^{1} \rightarrow M$ null - homotopic, recifiable, $|c| \leq$ $l\}$.
Proposition 10. Let $f: M_{1} \rightarrow M_{2}$ be a quasi-isometry between complete Riemannian manifolds. Then Fill $_{M_{1}} \simeq$ Fill $_{M_{2}}$. [No proof]
Proposition 11. A geodesic metric space is δ-hyperbolic if and only if it has a linear isoperimetric function. In particular Fill $_{\mathbb{H}^{2}}$ is linear. [No proof]

Proposition 12. Sol has exponential isoperimetric function.
To prove this we need the following result.
Lemma 13. Let G be a Lie group with a left-invariant Riemannian metric and let ω be a left-invariant 2-form on G. Let $\sigma: D^{2} \rightarrow G$ be an immersed 2-cell. Then there exists $K>0$ such that $\int_{\sigma} \omega \leq K \operatorname{Area}(\sigma)$. [Specifically $K=\|\omega\|$. [No proof]
Proof of proposition 12. We only prove a lower bound.
We construct an exact left-invariant 2-form on S ol from the left-invariant vector fields X_{1}, X_{2}, X_{3} defined above. Let X^{1}, X^{2}, X^{3} be the left-invariant 1-forms dual to these, namely $e^{-t} d x, e^{t} d y$ and $d t$. Then let $\omega=X^{1} \wedge X^{2}=d x \wedge d y . l_{g}^{*}\left(X^{1} \wedge X^{2}\right)=$ $l_{g}^{*}\left(X^{1}\right) \wedge l_{g}^{*}\left(X^{2}\right)=X^{1} \wedge X^{2}$ so this form is indeed left-invariant. $d(d x \wedge d y)=0$ so ω is closed, and since $H^{2}($ Sol $)=H^{2}\left(\mathbb{R}^{3}\right)=0 \omega$ is exact.

For $l \in \mathbb{R}_{+}$we construct a loop $c_{l}: S^{1} \rightarrow S o l$ as follows. Let $p_{1}=\left(\frac{1}{2} l, \frac{1}{2} l, 0\right), p_{2}=$ $\left(\frac{1}{2} l,-\frac{1}{2} l, 0\right), p_{3}=\left(-\frac{1}{2} l,-\frac{1}{2} l, 0\right), p_{4}=\left(-\frac{1}{2} l, \frac{1}{2} l, 0\right)$, i.e. the points at the four corners of a square of side length l in the horizontal plane in Sol through 0 . Let Q_{i} be the vertical hyperbolic plane containing p_{i} and p_{i+1} (addition taken modulo 4). Let γ_{i} be the hyperbolic geodesic in Q_{i} joining p_{i} to p_{i+1}. Let c_{l} be the concatenation of $\gamma_{1}, \ldots, \gamma_{4}$. By lemma 7 there exits A such that $\left|c_{l}\right| \leq A \log (l)$ for all l. We will show that there exits $K>0$ such that FArea $\left(c_{l}\right) \geq K l^{2}$.

By lemma 13 there exist $K>0$ such that the area of any filling disc σ for c_{l} is bounded below by $K \int_{\sigma} \omega$. But since ω is exact the value of this integral is independent of the disc chosen, so FArea $\left(c_{l}\right)$ is bounded below by $K \int_{\sigma} \omega$ for any choice of filling disc σ. We construct a choice of disc for which it is easy to evaluate the integral. Let H be the horizontal plane in $S o l$ through 0 . For $1 \leq i \leq 4$ let σ_{i} be the 2 -disc in Q_{i} bounded by γ_{i} and $Q_{i} \cap H$. Let σ^{\prime} be the 2-disc in H bounded by the four lines $Q_{i} \cap H$. The union of these five discs $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ and σ^{\prime} gives a filling disc for c_{l} consisting of a horizontal square of side length l and four vertical flaps. We now calculate $\int_{\sigma} \omega$. ω pulls back to 0 on each σ_{i} so $\int_{\sigma_{i}} \omega=0$. On $\sigma^{\prime} \omega$ is the Euclidean form $d x \wedge d y$ so $\int_{\sigma^{\prime}} \omega=l^{2}$. Thus $\int_{\sigma} \omega=l^{2}$ and so FArea $\left(c_{l}\right) \geq K l^{2}$. Hence $\operatorname{Fill}_{S o l}(A \log (l)) \geq K l^{2}$ so $\operatorname{Fill}_{S o l}(l) \geq K e^{2 l / A}$.

Corollary 14. Let $A \in S L_{2}(\mathbb{Z})$ with A conjugate in $G L_{2}(\mathbb{R})$ to a matrix of the form $\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ for some $\lambda>1$. Then $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ has exponential Dehn function.
Proof. Proposition 3 showed that $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ is a lattice in $S o l$ and acts on it properly and cocompactly by left translation. Since the action is also free it is a covering space action and so we have that $S o l$ is the universal cover of a compact manifold M with $\Pi_{1}(M) \cong \mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$. By the Filling Theorem $\delta_{\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}} \simeq \operatorname{Fill}_{M} \simeq \operatorname{Fill}_{\widetilde{M}}=$ Fill ${ }_{\text {Sol }}$.

The main result of the lectures is the following theorem on the quasi-rigidity of lattices in Sol.

Theorem 15. Let Γ be a finitely generated group quasi-isometric to Sol. Then there exists $K \triangleleft \Gamma$ with $|K|$ finite such that $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z} \leq_{f . i} . \Gamma / K$ for some $A \in S L_{2}(\mathbb{Z})$ with A conjugate in $G L_{2}(\mathbb{R})$ to a matrix of the form $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ for some $\lambda>1$.

To begin the proof of this result we require the following definitions.
Definition 16. For $t^{\prime} \in \mathbb{R}$ let $P_{t^{\prime}} \subseteq S o l$ be the horizontal plane $\left\{(x, y, t) \mid t=t^{\prime}\right\}$. Then a quasi-geodesic $\gamma: \mathbb{R} \rightarrow S o l$ is said to be vertical if there exists M such that $\operatorname{diam}\left(\gamma \cap P_{t}\right) \leq M$ for all $t \in \mathbb{R}$. A vertical quasi-geodesic ray is defined similarly.

By a vertical geodesic (respectively a vertical geodesic ray) in Sol we mean a geodesic $\mathbb{R} \rightarrow S o l($ respectively a geodesic ray $[0, \infty) \rightarrow S o l)$ of the form $t \mapsto(x, y, t)$ or $t \mapsto(x, y,-t)$ for some $x, y \in \mathbb{R}$.

Definition 17. Let X be a metric space. Then the Hausdorff distance between two sets $A, B \subseteq X$ is $d_{H}(A, B)=\inf \left\{\epsilon \mid A \subseteq N_{\epsilon}(B), B \subseteq N_{\epsilon}(A)\right\}$, where N_{ϵ} is the ϵ-neighbourhood of a set.

Definition 18. Let X be a metric space and $\gamma_{1}, \gamma_{2}:[0, \infty) \rightarrow X$ be geodesic rays. We say that γ_{1} is asymptotic to γ_{2} if there exists M such that $d\left(\gamma_{1}(t), \gamma_{2}(t)\right) \leq M$ for all $t \in[0, \infty)$. It can be shown that this is equivalent to the Hausdorff distance between the images of γ_{1} and γ_{2} being finite.

Now let $\gamma_{1}, \gamma_{2}:[0, \infty) \rightarrow X$ be quasi-geodesic rays. We say that γ_{1} and γ_{2} are asymptotic if $d_{H}\left(\operatorname{im}\left(\gamma_{1}\right), \operatorname{im}\left(\gamma_{2}\right)\right)$ is finite. [Note that this is not equivalent to $d\left(\gamma_{1}(t), \gamma_{2}(t)\right)$ being bounded.]

We write $\gamma_{1} \sim \gamma_{2}$ if γ_{1} and γ_{2} are asymptotic (quasi-)geodesic rays.
Note that quasi-isometries preserve the asymptoticity of quasi-geodesic rays.
Proposition 19. Let γ be a vertical quasi-geodesic ray in Sol. Then there exists ϵ and a vertical geodesic ray $\bar{\gamma}$ such that $d_{H}(\gamma, \bar{\gamma}) \leq \epsilon$, i.e. every vertical quasigeodesic is asymptotic to a vertical geodesic.

Proof.
Proposition 20. Let $f: S o l \rightarrow$ Sol be a quasi-isometry, and let γ be a vertical quasi-geodesic ray. Then $f \gamma$ is a vertical quasi-geodesic ray.

Proof.

Definition 21. Let X be a metric space. Define the boundary ∂X of X to be the collection of geodesic rays in X modulo the equivalence relation $\gamma_{1} \sim \gamma_{2}$ if γ_{1} and γ_{2} are asymptotic.

We now introduce the following subspaces of $\partial S o l$. Let ∂^{U} Sol be the collection of vertical geodesic rays (modulo asymptoticity) of the form $t \mapsto(x, y, t)$ for some $x, y \in \mathbb{R}$. Similarly define $\partial^{L} S o l$ to be the collection of vertical geodesic rays of the form $t \mapsto(x, y,-t)$. Note that by proposition $19 \partial^{U} S o l \cup \partial^{L} S o l$ is equivalent to the collection of vertical quasi-geodesic rays modulo asymptoticity. Furthermore, by proposition 20, a quasi-isometry $f: S o l \rightarrow S o l$ induces a map $f_{\partial}: \partial^{U} S o l \cup \partial^{L} S o l \rightarrow$ ∂^{U} Sol $\cup \partial^{L}$ Sol.

Consider two vertical geodesic rays lying in the same (x, t)-plane, i.e. of the form $\gamma_{1}: t \mapsto\left(x_{1}, y, t\right)$ and $\gamma_{2}: t \mapsto\left(x_{2}, y, t\right)$ for some fixed $x_{1}, x_{2}, y \in \mathbb{R}$. The metric on the plane is $e^{-2 t} d x^{2}+d t^{2}$ so $d\left(\gamma_{1}(t), \gamma_{2}(t)\right)=e^{-2 t} \leq 1$ for all $t \in[0, \infty)$ and hence $\gamma_{1} \sim \gamma_{2}$. Conversely suppose that two vertical geodesic rays lie in the same (y, t)-plane, i.e. that they are of the form $\gamma_{1}: t \mapsto\left(x, y_{1}, t\right)$ and $\gamma_{2}: t \mapsto\left(x, y_{2}, t\right)$ for some fixed $x, y_{1}, y_{2} \in \mathbb{R}$. Now the metric on this plane is $e^{2 t} d y^{2}+d t^{2}$ so $d\left(\gamma_{1}(t), \gamma_{2}(t)\right)=e^{2 t}$ which is unbounded. Hence γ_{1} and γ_{2} are not asymptotic. It follows that $\partial^{U} S o l$ is identifiable with the collection of (x, t)-planes in Sol, which are indexed by \mathbb{R}, and hence is isometric to \mathbb{R}. Similarly $\partial^{L} S o l$ is also isometric to \mathbb{R}. Since an 'upward' and a 'downward' geodesic ray are not asymptotic, ∂^{U} Sol and $\partial^{L} S o l$ are disjoint, and so their union is isometric to $\mathbb{R} \sqcup \mathbb{R}$.

Definition 22. Let X, Y be metric spaces. If $f: X \rightarrow Y$ is a quasi-isometry then there exists a quasi-isometry $f^{-1}: Y \rightarrow X$, called a quasi-inverse to f, such that there exists ϵ so as $d_{X}\left(x, f^{-1} f(x)\right) \leq \epsilon$ for all $x \in X$ and $d_{Y}\left(y, f f^{-1}(y)\right) \leq \epsilon$ for all $y \in Y$.

Let \sim be the equivalence relation on the set of quasi-isometries $X \rightarrow X$ given by $f \sim g$ if there exists ϵ such that $d(f(x), g(x)) \leq \epsilon$ for all $x \in X$. Then the quasiisometry group of X, written $\mathcal{Q} \mathcal{I}(X)$, is defined to be this set of quasi-isometries modulo \sim.

We have shown that a quasi-isometry Sol \rightarrow Sol induces a map $f_{\partial}: \mathbb{R} \sqcup \mathbb{R} \rightarrow$ $\mathbb{R} \sqcup \mathbb{R}$. Note that if f_{1}, f_{2} are quasi-isometries Sol \rightarrow Sol with $f_{1} \sim f_{2}$ and γ is a vertical quasi-geodesic then $f_{1}(\gamma)$ and $f_{2}(\gamma)$ are asymptotic, so in fact each $f \in \mathcal{Q I}($ Sol $)$ induces a map $f_{\partial}: \mathbb{R} \sqcup \mathbb{R} \rightarrow \mathbb{R} \sqcup \mathbb{R}$. ${ }^{* * * * * * * * W e ~ c a n ~ s h o w ~ t h a t ~} f_{\partial}$ is continuous. ${ }^{* * * * * * * * * * * * * * *}$ Now let f^{-1} be the quasi-inverse to $f \in \mathcal{Q I}$ (Sol) and let γ be a vertical quasi-geodesic. Then there exists ϵ such that $d\left(f f^{-1}(x), x\right) \leq \epsilon$ and $d\left(f^{-1} f(x), x\right) \leq \epsilon$ for all $x \in$ Sol. Thus $f^{-1} f(\gamma) \sim \gamma \sim f f^{-1}(\gamma)$ and so $\left(f^{-1}\right)_{\partial}$ is an inverse to f_{∂} in $\mathcal{C}(\mathbb{R})$. f_{∂} is therefore a homeomorphism of $\mathbb{R} \sqcup \mathbb{R}$, and we have shown that there exist a homomorphism $\mathcal{Q I}(S o l) \rightarrow \operatorname{Homeo}(\mathbb{R} \sqcup \mathbb{R})$.

Definition 23. A quasi-action of a finitely generated group G on a metric space X is a homomorphism $G \rightarrow \mathcal{Q I}(X)$.

Lemma 24. Let Γ be a finitely generated group quasi-isometric to a metric space X. Then there exists a quasi-action $\gamma \mapsto q_{\gamma}$ of Γ on X. Furthermore there exists $\lambda \geq 1$ and $\epsilon \geq 0$ such that q_{γ} is a (λ, ϵ)-quasi-isometry for all $\gamma \in \Gamma$.

Proof. Let $\theta: \Gamma \rightarrow X$ be the hypothesized quasi-isometry. Then for $\gamma \in \Gamma$ let $q_{\gamma}=\theta L_{\gamma} \theta^{-1}$ where $L_{\gamma}: \Gamma \rightarrow \Gamma$ is left multiplication by γ. Since L_{γ} is an isometry, and hence trivially a quasi-isometry, $q_{\gamma} \in \mathcal{Q} \mathcal{I}(X)$. If $\gamma_{1}, \gamma_{2} \in \Gamma$ then $q_{\gamma_{1} \gamma_{2}}=$ $f L_{\gamma_{1} \gamma_{2}} f^{-1}=f L_{\gamma_{1}} L_{\gamma_{2}} f^{-1} \sim f L_{\gamma_{1}} f^{-1} f L_{\gamma_{2}} f^{-1}=q_{\gamma_{1}} q_{\gamma_{2}}$ so we do indeed have a quasi-action. If f^{-1} is a $\left(\lambda_{1}, \epsilon_{1}\right)$-quasi-isometry and f is a $\left(\lambda_{2}, \epsilon_{2}\right)$-quasi-isometry then q_{γ} is a $\left(\lambda_{2} \lambda_{1}, \lambda_{2} \epsilon_{1}+\epsilon_{2}\right)$-quasi-isometry for each γ.

Applying this construction to the quasi-isometry given in the hypothesis of the theorem, we obtain quasi-action of Γ on Sol which can be shown to have the following two properties:

Co-compactness: There exists $C \in \mathbb{R}$ such that for all $x \in S o l$ there exists $\gamma \in \Gamma$ with $d\left(x, q_{\gamma}(0)\right) \leq C$, where 0 is the point $(0,0,0) \in S o l$.
Proper discontinuity: For all $x \in S o l$ and for all $C \geq 0, \mid\left\{\gamma \in \Gamma \mid d\left(q_{\gamma}(x), x\right) \leq\right.$ $C\} \mid$ is finite.
We showed above that there exists a homomorphism $\mathcal{Q I}(S o l) \rightarrow$ Homeo $(\mathbb{R} \sqcup \mathbb{R})$, and so by composition we have a homomorphism $\Psi: \Gamma \rightarrow \operatorname{Homeo}(\mathbb{R} \sqcup \mathbb{R})$. Now, by passing to an index 2 subgroup if necessary (which will not affect the conclusion of the theorem), we can assume that $\Psi(\gamma)$ fixes each component of $\mathbb{R} \sqcup \mathbb{R}$ for each $\gamma \in \Gamma$. Thus we have $\Psi: \Gamma \rightarrow \operatorname{Homeo}(\mathbb{R})^{2}$.

Definition 25. $f \in \operatorname{Homeo}(\mathbb{R})$ is a quasi-symmetric homeomorphism if there exists $K \geq 1$ such that for all $x, y \in \mathbb{R}$

$$
K^{-1} \leq \frac{|f(x)-f(z)|}{|f(x)-f(y)|} \leq K
$$

where z is the midpoint of x and y.
A subgroup $H \leq \operatorname{Homeo}(\mathbb{R})$ of quasi-symmetric homeomorphisms is uniform if there is such a constant K which holds for all $h \in H$.

Proposition 26. Let $f: S o l \rightarrow$ Sol be a (λ, ϵ)-quasi-isometry, and let $\left(f_{\partial}^{1}, f_{\partial}^{2}\right) \in$ Homeo $(\mathbb{R})^{2}$ be the induced homeomorphism. Then f_{∂}^{1} and f_{∂}^{2} are quasi-symmetric with constant depending only on λ and ϵ.
Proof.
It follows that the image of Γ in $\operatorname{Homeo}(\mathbb{R})^{2}$ is the direct product of two uniform groups of quasi-symmetric homeomorphisms.

Theorem 27 (Hinkkanen). If $H \leq \operatorname{Homeo}(\mathbb{R})$ is a uniform group of quasi-symmetric homeomorphisms then there exists a quasi-symmetric homeomorphism $\rho \in \operatorname{Homeo}(\mathbb{R})$ such that $\rho H \rho^{-1} \leq \operatorname{Aff}(\mathbb{R})$. [No proof]

Thus by composing with a conjugation we can assume that $\Psi: \Gamma \rightarrow \operatorname{Aff}(\mathbb{R})^{2}$.
Lemma 28. $|\operatorname{ker}(\Psi)|$ is finite.
Proof. Ψ is constructed as a composition of homomorphisms

$$
\Gamma \rightarrow \mathcal{Q I}(\text { Sol }) \rightarrow \text { Homeo }(\mathbb{R})^{2} \rightarrow \operatorname{Homeo}(\mathbb{R})^{2}
$$

The last of these, since it is a conjugation, is an isomorphism, so it suffices to prove that the composition of the first two homomorphisms has finite kernel.

Let $g \in \operatorname{ker} \Psi$. Fix a vertical hyperbolic plane $\mathbb{H}^{2} \subseteq S o l$, and choose a point $c \in \mathbb{H}^{2}$ and two geodesic rays $\gamma_{1}, \gamma_{2}:[0, \infty) \rightarrow \mathbb{H}^{2}$ with $\gamma_{i}(0)=c$ and γ_{1} and γ_{2} representing different boundary points in $\partial \mathbb{H}^{2}$. Since $g \in \operatorname{ker} \Psi, q_{g}$ fixes the boundary of Sol and hence of \mathbb{H}^{2}, so there exists K such that $d_{H}\left(q_{g} \gamma_{1}, \gamma_{1}\right) \leq K$ and $d_{H}\left(q_{g} \gamma_{2}, \gamma_{2}\right) \leq K$. Hence there exist x_{1} and x_{2} such that $d\left(q_{g} \gamma_{1}(0), \gamma_{1}\left(x_{1}\right)\right) \leq$ K and $d\left(q_{g} \gamma_{2}(0), \gamma_{2}\left(x_{2}\right)\right) \leq K$, and thus $d\left(\gamma_{1}\left(x_{1}\right), \gamma_{2}\left(x_{2}\right)\right) \leq 2 K$. Choose $M \in$ \mathbb{R} such that $g\left(\gamma_{1}(x), \gamma_{2}(y)\right)>2 K$ for all $x, y \geq M$. Then $x_{1}, x_{2}<M$. Thus $d\left(q_{g} \gamma_{1}(0), \gamma(0)\right) \leq d\left(q_{g} \gamma_{1}(0), \gamma_{1}\left(x_{1}\right)\right)+d\left(\gamma_{1}\left(x_{1}\right), \gamma_{1}(0)\right) \leq K+M$. But the quasiaction of Γ on $S o l$ is properly-discontinuous, so there are only a finite number of $g \in \Gamma$ which satisfy such an inequality.

Thus we have that $\Gamma / K \leq \operatorname{Aff}(\mathbb{R})^{2}$ for some finite K. Since $\operatorname{Aff}(\mathbb{R})$ is soluble so is $\operatorname{Aff}(\mathbb{R})^{2}$ and hence Γ / K.

Definition 29. A group G is a Poincaré duality group if it has a finite dimensional $K(G, 1)$, say of dimension n, and $H_{i}(G) \cong H^{n-i}(G)$ for $0 \leq i \leq n$.
Theorem 30. Let G be a soluble Poincaré duality group. Then G is virtually polycyclic. [No proof]

Theorem 31 (Gerston). The Poincaré duality property of groups is an invariant of quasi-isometry. [No proof]

We want to show that Γ / K has the poincaré duality property. To see this choose $A=\left(\begin{array}{cc}2 & 0 \\ 0 & \frac{1}{2}\end{array}\right)$, say, so as $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ is quasi-isometric to Sol, and hence to Γ, and hence, since $|K|$ is finite, to Γ / K. The action of $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ on $S o l$ by left translation is a covering space action, and $S o l$ is simply connected, so by quotienting we obtain a $K\left(\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}, 1\right)$ space M. Since $S o l$ is a 3 -manifold so is M, and so Poincaré duality gives that $H_{i}(M) \cong H^{3-i}(M)$ for $0 \leq i \leq 3$. It follows that $\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}$ has the Poincaré duality property, and hence by theorem 31 so does Γ / K. We deduce that Γ / K is virtually polycyclic. ${ }^{* * * * * * * * * * * * * * * * * * N o w ~ c o n s i d e r ~ H i r s c h ~ l e n g t h ~ a n d ~}$ growth rates. This complete the proof of theorem 15.

