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1 Hyperbolic Metric Spaces

The notion of a hyperbolic metric space is an attempt to capture the idea of
negative curvature in the setting of general metric spaces. There are many
equivalent definitions, but the following one, in the context of geodesic metric
spaces, is perhaps the most intuitive.

Definition 1.1 (Slim triangles and hyperbolic metric spaces) Let X be
a geodesic metric space and ∆ ⊂ X a geodesic triangle; that is, a set of three
geodesic segments in X such that any pair of segments shares precisely one
endpoint. Then ∆ is δ-slim if any side of ∆ is contained in the δ-neighbourhood
of the other two. The metric space X is δ-hyperbolic if every triangle is δ-slim,
and X is called hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

Note that the Euclidean plain is clearly not hyperbolic: just consider right-
angled isosceles triangles of arbitrary size. The most trivial example of a hyper-
bolic space is if X is any metric tree. Since all triangles in a tree are tripods,
such an X is 0-hyperbolic. It can be useful to think of hyperbolic spaces as
thickened trees.

The next example explains why the term hyperbolic is used.

Example 1.2 (The hyperbolic plane) Let X = H2. Consider a geodesic
triangle ∆ with sides α, β, γ. For a point x ∈ α, the shortest distance to β ∪ γ
is precisely the radius of the semicircle inscribed in ∆ centered at x. So ∆ is
δ-slim, where δ is the radius of the largest semicircle inscribed in ∆. Since the
area of triangles in H2 is bounded above by π it follows that the radii of inscribed
semicircles is also bounded, so H2 is hyperbolic. The best δ can be obtained by
calculating the radius of the semicircle inscribed in an ideal triangle, giving the
result δ = 1

2 log(3 + 2
√

2).

Recall the basic definitions of coarse geometry. That is that, for λ ≥ 1 and
ε ≥ 0, a (not necessarily continuous) map of metric spaces f : X → Y is a
(λ, ε)-quasi-isometric embedding if

1
λ

dX(x1, x2)− ε ≤ dY (f(x1), f(x2)) ≤ λdX(x1, x2) + ε
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for all x1, x2 ∈ X. If also there exists C ≥ 0 such that for all y ∈ Y ,
dY (y, im(X)) ≤ C then f is a quasi-isometry. In this case X and Y are
called quasi-isometric; using the axiom of choice it is easy to construct a
(λ, ε)-quasi-isometry g : Y → X, so being quasi-isometric is an equivalence re-
lation. A quasi-geodesic in X is a quasi-isometric embedding of an interval
into X.

The fundamental theorem concerning hyperbolic metric spaces asserts the
stability of quasi-geodesics.

Theorem 1.3 For all δ ≥ 0, λ ≥ 1,ε ≥ 0 there exists a constant R with the
following property. If X is a δ-hyperbolic geodesic metric space, α is a quasi-
geodesic segment in X and β is a geodesic between the end-points of α then the
Hausdorff distance between the images of α and β is at most R.

It follows immediately that the term ‘hyperbolic’ can be defined just as well
in terms of (λ, ε)-quasi-geodesic triangles instead of geodesic triangles. Hence,
among geodesic metric spaces, the property of being hyperbolic is an invariant
of coarse geometry.

2 Hyperbolic groups

The first step in geometric group theory is to turn groups into geometric objects.
In the case of finitely generated groups, an easy way to do this is via the group’s
Cayley graph.

Definition 2.1 (Cayley Graph) Let G be a finitely generated group. Fix a
finite generating set S ⊂ G. Then the Cayley Graph of G with respect to S,
denoted CS(G), is the graph with vertex set G and a single edge between the
unordered pair g, h ∈ G if and only if, for some s ∈ S, sg = h. It can be given
a metric by setting the length of each edge to 1 and insisting that the metric be
geodesic.

Note that a Cayley graph is connected and regular. Loops in the Cayley graph
correspond to relations in the generators.

Example 2.2 If G is a free group then, as there are no relations between the
generators, there are no loops in the Cayley graph. So it is a regular tree.

The group G embeds naturally into the Cayley graph, and the induced metric
on G is denoted dS and called the word metric. This embedding is a quasi-
isometry (set λ = 1, ε = 0 and C = 1

2 ). Note also, that the action of the group
on itself by right-multiplication extends to an isometric action on the Cayley
graph.

If a different finite generating set, T ⊂ G, is chosen instead, then an easy
induction argument shows that the identity map

(G, dS) → (G, dT )
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is a quasi-isometric embedding, with λ = 2maxt∈T dS(e, t) and ε = 0. There-
fore the Cayley graph of a finitely generated group is well-defined up to quasi-
isometry.

Definition 2.3 A finitely generated group is (word) hyperbolic if its Cayley
graph is a hyperbolic metric space.

The simplest example of a hyperbolic group is any finitely generated free
group: as noted above its Cayley graph is a tree. Hyperbolic groups are often
candidates for generalizing results that apply to free groups.

Recall the Švarc-Milnor Lemma, also known as the Fundamental Theorem
of Geometric Group Theory.

Theorem 2.4 (The Švarc-Milnor Lemma) Let X be a length space on which
a group G acts properly and cocompactly by isometries. Then G is finitely gener-
ated and for any choice of base-point x0 ∈ X, the map G → X given by g → g.x
is a quasi-isometry.

This gives a much larger class of examples.

Example 2.5 (Surface groups are hyperbolic) Let Σ be any surface of Eu-
ler characteristic less than 0, possibly with open discs removed. Then its uni-
versal cover carries a natural metric as a convex subset of the hyperbolic plane.
Therefore surface groups act properly and cocompactly on a hyperbolic space,
and so are hyperbolic.

3 R-trees and group actions

R-trees are defined to be 0-hyperbolic spaces. That is to say, any triangle is a
tripod. So the simplest example of an R-tree is just any metric tree. In this
context ordinary trees, are called simplicial. However, in general they can be
much more badly behaved.

Example 3.1 (The SNCF metric) Let X = R2, but with the following met-
ric. The distance between (x1, y1) and (x2, y2) is defined to be |y1−y2| if x1 = x2,
and |y1|+|x1−x2|+|y2| otherwise. This space is an R-tree, but cannot be given a
simplicial structure. For a separable example, just consider the subtree in which
all the ‘branches’ have rational x-coordinates.

Bass and Serre developed a comprehensive theory of group actions on sim-
plicial trees. They described the quotient as a graph of groups, consisting of a
finite graph with groups corresponding to the vertices and edges, and monomor-
phism from edge groups into the initial and terminal vertex groups. The sim-
plest cases, out of which all others are built, are amalgamated free products and
HNN-extensions.
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Definition 3.2 Let G =
〈
A

∣∣R〉
,H =

〈
B

∣∣S〉
be finitely-generated groups. Let K

be a subgroup of G, and φ : K → H a monomorphism. Then the amalgamated
free product of G and H over φ is defined to be

G ?φ H =
〈
A,B

∣∣R,S, {g−1φ(g)|g ∈ K}
〉
;

it is often abusively denoted G ?K H.
Now suppose φ is a monomorphism K → G. Then the HNN-extension

of G over φ is defined to be

G?φ =
〈
A, {t}

∣∣R, {t−1g−1tφ(g)|g ∈ K}
〉
,

often abusively denoted G?K .

Amalgamated free products correspond to the case of two vertices joined by one
edge, and HNN-extensions correspond to a single vertex with a loop.

As a result of the work of Rips, actions on R-trees are also well understood.
For example, there is the following theorem.

Theorem 3.3 Suppose a finitely presentable hyperbolic group with one end acts
on an R-tree with no global fixed points and virtually cyclic arc stabilizers. Then
the group splits as an amalgamated free product or HNN-extension.

4 Degenerations of group actions on hyperbolic
spaces

This understanding of group actions on R-trees suggests a strategy for proving
theorems about groups that act on hyperbolic spaces, as follows. Take sequence
of actions on a hyperbolic space. If the ‘scale’ of the action increases, then they
should degenerate to an action on a 0-hyperbolic space. This requires a notion
of convergence of group actions.

Definition 4.1 (Convergence of based G-spaces) Let G be a finitely-generated
group. A based G-space is a triple (X, x, ρ), where X is a metric space, x ∈ X
is a point and ρ is a homomorphism G → Isom(X). This induces a pseudo-
metric on G, given by

d(X,x,ρ)(g, h) = dX(ρ(g)x, ρ(h)x)

for g, h ∈ G, which has an image in PED(G), the projectivized space of non-zero
G-equivariant pseudo-metrics on G, equipped with the compact-open topology.
For (Xi, xi, ρi) a sequence of based G-spaces, write

(Xi, xi, ρi) → (X, x, ρ)

if d(Xi,xi,ρi) converges to d(X,x,ρ) in PED(G).
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Lemma 4.2 PED(G) is compact.

Proof: Fix S a finite generating set for G. Let di be a sequence of equivariant
pseudo-metrics on G. Without loss of generality, for all s ∈ S, di(e, s) ≤ 1.

Passing to successive subsequences ensures, at the nth stage, that for all
words w of length at most n, d(e, w) converges (since by induction, for such a
word w, d(e, w) ≤ n). Now a diagonal argument provides a subsequence for
which di(e, g) converges for all g, to d(e, g) say. This propagates to all distances
by G-equivariance. QED

A notion of scale for a group action is also needed. Fix a finite generating
set S for G. The scale function for (X, x, ρ) is defined by

σS(y) = max
s∈S

d(x, ρ(s)x)

for y ∈ X.
Now the notion of degenerating actions on hyperbolic spaces is encompassed

in a compactness theorem.

Theorem 4.3 (Compactness Theorem for actions on hyperbolic spaces)
Let X be a cocompact hyperbolic metric space and ρi : G → Isom(X) a sequence
of homomorphisms. Then, after passing to a subsequence, one of the following
holds.

1. There exist isometries φi ∈ Isom(X) such that the sequence φi◦ρ◦φ−1
i con-

verges in the compact-open topology to a representation ρ : G → Isom(X).

2. The sequence of based G-spaces (Xi, xi, ρi) converges to an action of G on
an R-tree.

Proof: Fix a generating set S for G, and let σS,i be the scale function for
(Xi, xi, ρi).

1. Suppose σS,i does not converge to infinity. Then by passing to a subse-
quence, the d(Xi,xi,ρi) are uniformly bounded. By the cocompactness of
X there exist isometries φi of X such that φi(xi) lies in some compact
subset K for all i. Now apply the Arzela-Ascoli theorem.

2. Now suppose σS,i converges to infinity. By the last lemma, passing to a
subsequence there does exist some limit. It is clear that, for a δ-hyperbolic
space, if the metric is multiplies by a positive constant then the optimal
δ is divided by it. So the limiting pseudo-metric on G is 0-hyperbolic (in
some sense for non-geodesic spaces). There is a slight technical problem
here, to ‘sew together’ a non-geodesic 0-hyperbolic place to give an R-tree,
but it is not difficult to resolve.

QED
For this theorem to be of any use, it is necessary to ensure that the resulting

action on an R-tree is non-trivial. This comes down to correct selection of the
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base-point. In fact, if the xi are chosen to minimize σS,i on X, then the resulting
action on an R-tree also has no global fixed points. Here are the details. Let
F ⊂ G be a finite subset. Then for x ∈ T , define Xi(F, x) as follows. Whenever
g, h ∈ F are such that x lies on the geodesic between them, let Xi(F, x) contain
every point in Xi on a geodesic between ρi(g)xi and ρi(h)xi that divides the
geodesic in the same ratio as x divides the geodesic in T . These have the
following properties.

Proposition 4.4 1. For all x there always exists finite F such that Xi(F, x)
is non-empty.

2. ρi(g)Xi(F, x) = Xi(gF, ρ(g)x).

3. If F ⊆ F ′ then Xi(F, x) ⊆ Xi(F ′, x).

4. diamXi(F,x)
σS,i(xi)

→ 0 as i →∞.

Now suppose x ∈ T is a global fixed point. Then for any yi ∈ Xi(F, x) it
follows that yi, ρi(g)yi ∈ X(gF ∪ F, x), in which case assertion 4 of the above
proposition contradicts the choice of xi.

5 Paulin’s Theorem

In this section the ideas developed so far are applied to prove a group-theoretic
result.

Definition 5.1 Let G be a finitely-generated group. Then an inner auto-
morphism of G is an automorphism of the form x → g−1xg for some g ∈ G.
The group of inner automorphisms of G is denoted Inn(G). Now the outer
automorphism group of G is defined to be

Out(G) = Aut(G)/Inn(G).

Incidentally, there exists a more geometric interpretation of G, as a result of
a theorem of Nielsen.

Theorem 5.2 Let Σ be a surface. Then

Out(π1(Σ)) ∼= MCG(Σ).

The aim of this section is to prove the following theorem.

Theorem 5.3 (Paulin, Bridson and Swarup) Let G be a ‘generic’ finitely-
presentable hyperbolic group with Out(G) infinite. Then G splits as an amalga-
mated free product or HNN-extension.

By the theorem on group actions on R-trees discussed earlier, this follows from
the next theorem.
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Theorem 5.4 Let G be a finitely-generated hyperbolic group with Out(G) infi-
nite. Then G acts on an R-tree with no global fixed points and virtually cyclic
arc stabilizers.

So the theory developed above is employed. Fix a finite generating set S
of G, and let X be the corresponding Cayley graph of G. By assumption, Γ is
δ-hyperbolic for some δ. Because Out(G) is infinite, it is possible to choose an
infinite sequence of φi ∈ Aut(G), none of which are inner automorphisms, and
no two of which have identical images in Out(G). Define the action ρi of G on
X by stipulating that g ∈ G acts via φi(g). Now the compactness theorem can
be applied.

Note that σS,i is integer-valued at vertices and edge mid-points of X, and lin-
ear in between, so base-points can certainly be chosen to minimize σS,i. There-
fore any resulting action on an R-tree won’t have global fixed points.

Suppose σS,i(xi) is bounded, say by M . Then for yi the nearest vertex to xi

and all s ∈ S it follows that d(e, y−1
i φi(s)yi) = d(yi, φi(s)yi) ≤ M +2. Therefore

two of the φi have the same image in Out(G), contradicting their choice.
Therefore G acts without global fixed points on an R-tree. It remains to

show that arc stabilizers are virtually cyclic. This requires a fiddly argument
using hyperbolicity, which is too lengthy to detail here, but there is one neat
simplification worth mentioning.

Lemma 5.5 Let G be a virtually abelian hyperbolic group. Then G is virtually
cyclic.

Proof: Let A ⊆ G be an abelian subgroup of finite index. It acts properly
and cocompactly on G, so by the Švarc-Milnor Lemma is finitely-generated and
quasi-isomorphic to G; therefore it is hyperbolic. Suppose it is of rank 2 or
more. Then its Cayley graph contains an isometric copy of a 2-dimensional
Euclidean lattice. This contradicts the fact that it is hyperbolic. QED
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