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Q 1. (i) If p(x) is irreducible over E and has a root in M ∩N , then it has a root in M and
a root in N , and hence splits completely in both M and N . So all the roots of p(x) in F are
in both M and N , and hence in M ∩N . Hence M ∩N is normal.

(ii) If M is the splitting field of f(x) and N is the splitting field of g(x) then MN is the
splitting field of f(x)g(x) (not hard to check). Hence MN is normal.

Q 2. This is an unreasonably difficult question, but let’s at least see what I can do.1

(a) Pick λ1, . . . , λn ∈ L such that L = K(λ1, . . . , λn). For all i = 1, . . . , n, let fi(x) ∈ K[x]
be the minimal polynomial of λi over K, let

f(x) =
n∏

i=1

fi(x) ∈ K[x]

and let L ⊂ Ω be the splitting field of f(x) now thought of as a polynomial in L[x]. Composing
K ⊂ L and L ⊂ Ω we have K ⊂ Ω and It is pretty clear that this is also the splitting field
of f(x) over K. (Why?) I claim that L ⊂ Ω is a normal closure of K ⊂ L.

To check this I need to verify the two defining properties of a normal closure. The first is
just saying that K ⊂ Ω is normal, and it is because it is a splitting field.

It remains to verify that Ω is generated over K by the set:

Λ = {σ(λi) | i = 1, . . . , n, σ ∈ EmbK(L,Ω)}

(Please convince yourselves that this is so.) On the other hand we know that Ω is generated
over K by the set of the roots of f(x):

Z = {µ ∈ Ω | f(µ) = 0}

so we will be done if we show that Λ = Z. Now we know that if λ is a root of f and
σ ∈ EmbK(L,Ω) then σ(λ) is also a root of f , that is, Λ ⊂ Z. Let us now show that Z ⊂ Λ.

1Don’t worry too much if you don’t follow the proof. I forbid you to spend more than five hours trying
to understand this.
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Let µ ∈ Ω be a root of f . Then for some i = 1, . . . , n µ is a root of fi. We know that there
is an embedding

K(λi)
ϕ // Ω

K

OO <<

such that ϕ(λi) = µ; and by Lemma 16 (B) this ϕ extends to ϕ̃ : Ω→ Ω:

Ω
ϕ̃

""
K(λi)

OO

ϕ // Ω

K

OO <<

Now consider σ = ϕ̃|L ∈ EmbK(L,Ω); by construction σ(λi) = µ. This shows that µ ∈ Λ
and that Z ⊂ Λ and finishes Part(a).

(b) We need to show that K ⊂ Ω is normal.

Claim For all λ ∈ L let f(x) ∈ K(x) be its minimal polynomial: then f(x) ∈ Ω[x] splits
completely.

The claim and property 1. imply: Choose λ1, . . . , λn such that L = K(λ1, . . . , λn) and
call fi ∈ K[x] the minimal polynomial of λi, then Ω is the splitting field of f =

∏n
i=1 fi

2, and
hence K ⊂ Ω is normal.

Let us prove the claim. We don’t yet know that K ⊂ Ω is normal, but we can always
make a bigger field Ω ⊂ Ω̃ such that K ⊂ Ω̃ is a normal extension. Now here comes the key
point. Composing with the inclusion Ω→ Ω̃ we obtain a natural inclusion

EmbK(L,Ω)→ EmbK(L, Ω̃)

and this inclusion is a bijection because by 2. the two sets have the same number [L : K]s of

elements. In other words (and this is the key point): every K-embedding σ : L → Ω̃ in fact
lands in Ω. Now we are ready to prove the claim. We know that f(x) splits completely in

Ω̃. Thus, it is enough to show that if µ ∈ Ω̃ is a root off , then in fact µ ∈ Ω. Arguing as
in Part (a) we can construct an embedding σ : L → Ω̃ such that σ(λ) = µ. But as we said
σ(L) ⊂ Ω so in fact µ = σ(λ) ∈ Ω and we are done.

Q 3. (a) It’s the field of fractions of k[T p]. Or, check explicitly that if S = T p then this is
just the field of fractions of k[S]. Or check that it’s a subset containing 0 and 1 and closed
under +−×/.

(b) In fact any subfield of L containing k and T must contain f(T ) for any polynomial
f ∈ k[T ] and hence it must contain f(T )/g(T ) if g is a non-zero polynomial. Hence L = k(T )
in the sense that it’s the smallest subfield of L containing k and T , so L = k(T ) ⊆ K(T ) ⊆ L
and all inclusions are equalities.

2this requires some argument that I am not spelling out: please convince yourself that this is true
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(c) T is a root of the polynomial xp − T p ∈ K[x].

(d) If q(x) = xp − T p factored in K[x] into two factors f and g of degrees a and b, with
a + b = p and 0 < a, b < p, then by rescaling we can assume both factors are monic. Now
consider the factorization q(x) = (x − T )p in L[x]. This is the factorization of q(x) into
primes in L[x], and there’s only one prime involved, namely x− T . Because q = fg in L[x],
we must have f(x) = (x− T )a and g(x) = (x− T )b – anything else would contradict unique
factorization. But this means the constant term of f(x) is ±T a and because 0 < a < p we
know a isn’t a multiple of p and hence ±T a 6∈ K and so f(x) 6∈ K[x], a contradiction.

(e) q(x) is irreducible in K[x] and T is a root, so it’s the min poly. It’s not separable
because it is irreducible over K but has repeated roots in L (namely T , p times).

(f) T ∈ L is not separable over K because its min poly isn’t. Hence L/K is not separable,
because L contains an element which is not separable over K.

Q 4. (i) If L = E(α1, . . . , αn) then for E ⊆ K ⊆ F we have that K contains L iff K contains
all the αi. So if E ⊆ K ⊆ F then E contains N iff E contains M and the αi iff E contains
M and L; hence N is the smallest subfield of F containing M and L.

(ii) If L is the splitting field of p(x) ∈ E[x] and M is the splitting field of q(x) ∈ E[x]
(these polynomials exist by normality) then I claim N is the splitting field of p(x)q(x); indeed
if the αi are the roots of p and βj are the roots of q then by the first part N is the field
generated by the αi and the βj. Now N is finite and normal; moreover each of the αi and
the βj are separable over E (as each is contained in either L or M) and hence each time we
adjoin one we get a separable extension; finally a separable extension of a separable extension
is separable (by comparing degrees and separable degrees).

(iii) If g ∈ Gal(N/E) then g(L) = L by 6.7 and hence the restriction of g to L is in
Gal(L/E). Similar for M/E. So we get a map Gal(N/E) → Gal(L/E) × Gal(M/E). This
is easily checked to be a group homomorphism. It’s injective because anything in the kernel
fixes L and M pointwise, so fixes LM pointwise; but LM = N .

It’s not always surjective though – for example if L = M then it hardly ever is. More
generally if L∩M 6= E then there will be problems. However if L∩M = E then the map is
a bijection.

Q 5. (a) The two polynomials have degree 3 and have no roots in F2 (just plug x = 0, 1)
hence they are irreducible.

If σ : K → L then σ(α) is a root of f(x) in L; and f(x) has three roots in L:

β + 1; β2 + 1; β2 + β

indeed, for example, we can check directly that:

(β + 1)3 = β3 + β2 + β + 1 = (β2 + 1) + β2 + β + 1 = β = (β + 1) + 1

that is, β + 1 is a root of f(x). The other roots of f are Fr2(β + 1) = β2 + 1 and
Fr2(β

2 + 1) = β4 + 1 = β(β2 + 1) + 1 = β2 + 1 + β + 1 = β2 + β. (But one can also check
directly.)

A basic result about fields states that a morphism from K to L is the same as a root of
f(x) in L and there are 3 of these. As f and g are irreducible we know that K and L
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have degree 3 over F2 and we have shown in class that any two finite fields of the same
degree over the base field are isomorphic. Since both fields have degree 3 over the base
field F2, all morphisms from K to L are isomorphisms hence there are 3 of these. (This
gives another reason why K and L are isomorphic.)

(b) h(x) ∈ F2[x] is irreducible because: it has no roots (plug x = 0 and x = 1) in F2 AND it
is not divisible by x2 + x + 1, the only irreducible degree two polynomial in F2[x] — as
can be checked by performing long division in F2[x].

Let L ⊂ E be the splitting field of h(x) as a polynomial in L[x]. The extension F2 ⊂ E
is normal and separable because ALL finite extensions of finite fields are. Clearly E
contains the splitting field F2 ⊂ F of h(x) ∈ F2[x]:

E

L

3

F

2

F4

We know that h(x) ∈ F2[x] is irreducible; hence if γ ∈ F is a root of h, then [F2(γ) :
F2] = 4. We know that every finite extension of a finite field is normal and separable,
therefore F2 ⊂ F is normal and hence (by a known characterisation of normal extensions)
h(x) splits completely in F2(γ)[x] — because it is irreducible over F2 and has a root in
F2(γ) — hence actually F = F2(γ) and then, as indicated in the diagram, [F : F2] =
[F2(γ) : F2] = 4.

The tower law implies that 3|[E : F2] and 4|[E : F2] hence 12|[E : F2]. But clearly also
E = L(γ) and then [E : L] is the degree of the minimal polynomial of γ over L, which is
a factor of h, hence [E : F2] = [E : L][L : F2] ≤ 12. So in fact [E : F2] = 12; [E : L] = 4,
h ∈ L[x] is the minimal polynomial of γ and it is therefore irreducible.

Q 6. (This is a pure algebra question.) The (n− 1)-cycle c must fix an element of [n]3 which
we may well assume to be 1, and then after re-labelling the elements of [n] we may assume
that c = (23 . . . n). Let t be the transposition; then:

Either t involves 1, and then by further relabelling elements we may assume c = (23 · · ·n),
t = (12), and it is easy to conclude from here;

Or t = (ab) where 1 < a < b: this is what we assume from now on.

Because G is transitive, it must contain an element σ such that σ(a) = 1, but then σtσ−1 =
(1σ(b)) and we are back in the previous case.

Q 7. We look at the polynomial modulo small primes:4 Modulo p = 2 we get:

3Notation: [n] = {1, 2, . . . , n} is the set with n elements.
4In this and the next questions we use the following result which was proved in class: THEOREM

Let f(X) ∈ Z[X] be monic of degree n, p ≥ 1 a prime such that the reduction mod p f(X) ∈ Fp[X] has
distinct roots and factors as a product of irreducible factors of degree n1, . . . , nk. Then the Galois group
G of the splitting field Q ⊂ L of f contains a permutation of the roots of f whose cycle decomposition is
(n1)(n2) · · · (nk).
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f(x) = x6 − 12x4 + 15x3 − 6x2 + 15x+ 12 ≡ x(x5 + x2 + 1) mod 2

where the second polynomial r(x) = x5 + x2 + 1 is irreducible because if it weren’t it would
split an irreducible degree two polynomial, but the only such polynomial is x2 + x+ 1 which
does not divide into r(x) (direct inspection). By the theorem in the footnote, the Galois
group G contains a 5-cycle.

Eisenstein at p = 3 shows that f(x) is irreducible in Q[x] and in turn this implies that G
is transitive.

Next:
f(x) ≡ (x+ 1)(x+ 2)(x+ 3)(x+ 4)(x2 + 3) mod 5

thus by the theorem in the footnote G contains a transposition.

By Question 6 G = S6.

Q 8. (a) Let us first consider the polynomial in F2[x]. Clearly x = 1 is a root of f(x) and a
small calculation shows

x4 + x2 + x+ 1 = (x+ 1)(x3 + x2 + 1) in F2[x]

and then x3 +x+1 ∈ F2[x] is irreducible because it has no roots in F2 (just plug in x = 0
and x = 1).

Next, we work in F3[x]. A quick inspection shows that f(x) has no roots in F3: just plug
x = 0, 1,−1. To show that the polynomial f(x) ∈ F3[x] is irreducible, we show that it is
not divisible by any of the three irreducible degree 2 polynomial in F3[x]: these are:

x2 + 1, x2 + x− 1, x2 − x− 1

Performing three long divisions in F3[x] we see:

x4 + x2 + x+ 1 = (x2 + 1)(x2) + x+ 1

x4 + x2 + x+ 1 = (x2 + x− 1)(x2 − x) + 1

x4 + x2 + x+ 1 = (x2 − x− 1)(x2 + x)− x+ 1

these calculations show that f is irreducible in F3[x].

(b) A result proved in class implies that the Galois group G of the splitting field Q ⊂ K
contains a 3-cycle and a 4-cycle. If a subgroup G of S4 contains a 3-cycle and a 4-cycle
then G = S4. (See Question 9 below.) Therefore, G = S4.

Q 9. (a) First, working modulo 2,

f(X) ≡ X4 + 3X + 1 ∈ F2[X]

is irreducible. Indeed, by inspection, it does not have a root in F2, and it is not divisible by
the only irreducible degree 2 monic polynomial x2 +x+1 ∈ F2[X]. In fact long division gives

X4 +X + 1 = (X2 +X + 1)(X2 +X) + 1

5



Next, it is easy to factor f(X) mod 5:5

f(X) ≡ (X − 1)(X3 +X2 +X − 1) ∈ F5[X]

where the degree 3 factor is irreducible because, by inspection, it has no root in F5.

(b) Suppose that G ⊂ S4 contains a 4-cycle and a 3-cycle. Let the 4-cycle be s = (abcd).
Note that we can write s = (dabc), etc. Thus, we may assume that the 3-cycle t fixes the last
letter d in the 4-cycle. Now either t = (abc) or t = (acb), but then t2 = (abc). The conclusion
is that we may assume s = (1234), t = (123). You take it from here.

(c) By Part (a) and the theorem in the footnote, the Galois group contains a 4-cycle and
a 3-cycle hence, by Part (b) it must be all of S4.

Q 10. With all the hints and the examples, this should not be too hard. You do it (or else
ignore this question).

Q 11. (a) x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1) and

ζ =
1 + i

√
3

2
is a root of Φ6(x) = x2 − x+ 1 ∈ Q[x]

Since Q ⊂ Q(ζ) is the splitting field of Φ6(x), we have [Q(ζ) : Q] = 2.

(b) The polynomial x6+3 ∈ Q[x] is irreducible by the Eisenstein criterion. By an elementary
fact on fields, if α ∈ K is a root, that is α6 = −3, then [Q(α) : Q] = 6. Now β = α3

satisfies:
β2 = −3,

in other words, β = ±i
√

3 and we have a tower of fields:

Q ⊂ Q(ζ) = Q(i
√

3) ⊂ Q(α)

Since K = Q(ζ, α) and ζ ∈ Q(α), we have in fact K = Q(α), so from above [K : Q] = 6.

The Galois group G permutes the roots of f(x) = x6 + 3 so consider σ ∈ G, then
σ(α) = ζkα for a unique k ∈ Z/6Z, and — ideally — I would like you to have checked
that the assignment σ 7→ k is an isomorphism G ∼= Z/6Z. (It is an injective group
homomorphism and |G| = 6.)

(c) As before x6 − 3 ∈ Q[x] is irreducible. Let α ∈ R, α6 = 3. As before [Q(α) : Q] = 6 but
now, because Q(α) ⊂ R, ζ 6∈ Q(α) and Φ6(x) remains irreducible in Q(α). We have a
diagram of fields

K

Q(α)

2

6

Q(i
√

3)

2

Q
5Working mod 3 is not going to lead to useful information: it is clear by inspection that f(X) has no root

in F3 and then either f(X) is irreducible (no useful conclusion) or it splits into two quadratic polynomials
(again no useful conclusion).
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The diagram shows that [K : Q] = 12. The situation at this point is similar to x4 − 2 ∈
Q[x] — which was discussed at length in class — and you can treat it in a similar fashion:
an element σ ∈ G is completely determined once you know: σ(α) (6 possibilities) and σ(ζ)
(two possibilities) for a total of 12 possibilities. Because |G| = 12 all these possibilities
are realised, and it is not hard to see that one gets the dihedral group D12.

Q 12. I am sorry, I can’t write this down for you. You do it: it is fun!

7


