M3P11 (and M4P11, M5P11) Galois Theory, Solutions
to Worksheet 4

Alessio Corti
28th April 2020

Q 1. (i) If p(z) is irreducible over E and has a root in M N N, then it has a root in M and
a root in N, and hence splits completely in both M and N. So all the roots of p(x) in F are
in both M and N, and hence in M N N. Hence M N N is normal.

(ii) If M is the splitting field of f(x) and N is the splitting field of g(x) then M N is the
splitting field of f(x)g(x) (not hard to check). Hence M N is normal.

Q 2. This is an unreasonably difficult question, but let’s at least see what I can do.r'_-]
(a) Pick Ay,..., A\, € Lsuchthat L = K(\y,...,\,). Foralli=1,...,n,let f;(z) € K[z]
be the minimal polynomial of \; over K, let

f@) = [ i) € Ko

and let L C €2 be the splitting field of f(x) now thought of as a polynomial in L[z]. Composing
K C Land L C QQ we have K C Q and It is pretty clear that this is also the splitting field
of f(x) over K. (Why?) I claim that L C €2 is a normal closure of K C L.

To check this I need to verify the two defining properties of a normal closure. The first is
just saying that K C €2 is normal, and it is because it is a splitting field.
It remains to verify that ) is generated over K by the set:

A={o(N)|i=1,...,n, 0 € Embg(L,Q)}

(Please convince yourselves that this is so.) On the other hand we know that 2 is generated
over K by the set of the roots of f(x):

Z={neQ|f(u) =0}

so we will be done if we show that A = Z. Now we know that if \ is a root of f and
o € Embg (L, Q) then o(A) is also a root of f, that is, A C Z. Let us now show that Z C A.

'Don’t worry too much if you don’t follow the proof. I forbid you to spend more than five hours trying
to understand this.



Let € Q be a root of f. Then for some i = 1,...,n pis a root of f;. We know that there
is an embedding

K(\ Q

N\

K
such that ¢()\;) = p; and by Lemma 16 (B) this ¢ extends to @: Q — Q:

Q
|
K(n)2—=0

17

Now consider o = ¢ € Embg(L,2); by construction o(A;) = p. This shows that y € A
and that Z C A and finishes Part(a).

(b) We need to show that K C € is normal.

CrLAam For all A € L let f(z) € K(x) be its minimal polynomial: then f(x) € Q[z] splits
completely.

The claim and property 1. imply: Choose Ay, ..., A, such that L = K(A,...,\,) and
call f; € K[x] the minimal polynomial of \;, then € is the splitting field of f =[]}, fﬁ, and
hence K C 2 is normal.

Let us prove the claim. We don’t yet know that K C € is normal, but we can always

make a bigger field €2 C €2 such that K C (2 is a normal extension. Now here comes the key
point. Composing with the inclusion €2 — €2 we obtain a natural inclusion

Emby (L, Q) — Embg (L, Q)

and this inclusion is a bijection because by 2. the two sets have the same number [L : K], of
elements. In other words (and this is the key point): every K-embedding o: L — Q in fact
lands in 2. Now we are ready to prove the claim. We know that f(x) splits completely in
Q. Thus, it is enough to show that if u € Qis a root of f, then in fact u € Q. Arguing as
in Part (a) we can construct an embedding o: L — Q such that o(\) = u. But as we said
o(L) C Qsoin fact p = o(A) € Q and we are done.

Q 3. (a) It’s the field of fractions of k[T?]. Or, check explicitly that if S = T? then this is
just the field of fractions of k[S]. Or check that it’s a subset containing 0 and 1 and closed
under + — x/.

(b) In fact any subfield of L containing k& and 7" must contain f(7") for any polynomial
f € k[T] and hence it must contain f(7")/g(T) if ¢ is a non-zero polynomial. Hence L = k(T)
in the sense that it’s the smallest subfield of L containing k and T', so L = k(T) C K(T) C L
and all inclusions are equalities.

2this requires some argument that I am not spelling out: please convince yourself that this is true
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(c) T is a root of the polynomial 27 — T? € K|z].

(d) If g(x) = P — TP factored in K [z] into two factors f and g of degrees a and b, with
a+b=pand0 < a,b< p, then by rescaling we can assume both factors are monic. Now
consider the factorization ¢(x) = (x — T)? in L[z]. This is the factorization of ¢(x) into
primes in L[z], and there’s only one prime involved, namely = — T'. Because ¢ = fg in L[x],
we must have f(z) = (z — T)?® and g(z) = (z — T)® — anything else would contradict unique
factorization. But this means the constant term of f(x) is £7® and because 0 < a < p we
know @ isn’t a multiple of p and hence £7* ¢ K and so f(z) ¢ K|z], a contradiction.

(e) g(x) is irreducible in K[z] and T is a root, so it’s the min poly. It’s not separable
because it is irreducible over K but has repeated roots in L (namely 7', p times).

(f) T € L is not separable over K because its min poly isn’t. Hence L/K is not separable,
because L contains an element which is not separable over K.

Q4. (i) If L=FE(ay,...,a,) then for E C K C F we have that K contains L iff K contains
all the ;. So if E C K C F then E contains N iff E contains M and the «; iff £ contains
M and L; hence N is the smallest subfield of F' containing M and L.

(i) If L is the splitting field of p(x) € E[z] and M is the splitting field of ¢(x) € E[z]
(these polynomials exist by normality) then I claim N is the splitting field of p(x)q(z); indeed
if the «; are the roots of p and 3; are the roots of ¢ then by the first part N is the field
generated by the a; and the 8;. Now N is finite and normal; moreover each of the «; and
the (; are separable over E (as each is contained in either L or M) and hence each time we
adjoin one we get a separable extension; finally a separable extension of a separable extension
is separable (by comparing degrees and separable degrees).

(iii) If ¢ € Gal(N/E) then g(L) = L by 6.7 and hence the restriction of ¢ to L is in
Gal(L/E). Similar for M/E. So we get a map Gal(N/E) — Gal(L/E) x Gal(M/E). This
is easily checked to be a group homomorphism. It’s injective because anything in the kernel
fixes L and M pointwise, so fixes LM pointwise; but LM = N.

It’s not always surjective though — for example if L = M then it hardly ever is. More
generally if LN M # E then there will be problems. However if L N M = E then the map is
a bijection.

Q 5. (a) The two polynomials have degree 3 and have no roots in Fy (just plug x = 0,1)
hence they are irreducible.

If o: K — L then o(a) is a root of f(x) in L; and f(z) has three roots in L:
B+1 41 f+p
indeed, for example, we can check directly that:
B+’ =8+ +B+1=(F+1)+++1=8=(B+1)+1

that is, 8+ 1 is a root of f(z). The other roots of f are Fry(8 + 1) = 82 + 1 and
Fro(2+1)=p*+1=8(8*+1)+1=3>+1++1= 3%+ 3. (But one can also check
directly.)

A basic result about fields states that a morphism from K to L is the same as a root of
f(z) in L and there are 3 of these. As f and g are irreducible we know that K and L
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have degree 3 over F5 and we have shown in class that any two finite fields of the same
degree over the base field are isomorphic. Since both fields have degree 3 over the base
field [Fy, all morphisms from K to L are isomorphisms hence there are 3 of these. (This
gives another reason why K and L are isomorphic.)

(b) h(z) € Fy[z] is irreducible because: it has no roots (plug z = 0 and z = 1) in Fy AND it
is not divisible by x? + = + 1, the only irreducible degree two polynomial in Fy[z] — as
can be checked by performing long division in Fa[z].

Let L C E be the splitting field of h(x) as a polynomial in L[x]. The extension Fy C E
is normal and separable because ALL finite extensions of finite fields are. Clearly E
contains the splitting field Fy C F of h(x) € Fyx]:

L/E\F
N

We know that h(x) € Fy[x] is irreducible; hence if v € F' is a root of h, then [Fy(7) :
Fy] = 4. We know that every finite extension of a finite field is normal and separable,
therefore Fo C F is normal and hence (by a known characterisation of normal extensions)
h(x) splits completely in Fo(7y)[x] — because it is irreducible over Fy and has a root in
Fy(y) — hence actually F' = Fy(y) and then, as indicated in the diagram, [F' : Fy] =
[Fa(7) : Fo] = 4.

The tower law implies that 3|[E : Fs] and 4|[E : Fs] hence 12|[E : Fy]. But clearly also
E = L(~) and then [E : L] is the degree of the minimal polynomial of v over L, which is
a factor of h, hence [E : Fo] = [E : L|[L : Fy) < 12. So in fact [E : Fy] = 12; [E': L] = 4,
h € L[z] is the minimal polynomial of v and it is therefore irreducible.

Q 6. (This is a pure algebra question.) The (n— 1)-cycle ¢ must fix an element of [nf] which
we may well assume to be 1, and then after re-labelling the elements of [n] we may assume
that ¢ = (23...n). Let t be the transposition; then:

Either ¢ involves 1, and then by further relabelling elements we may assume ¢ = (23---n),
t = (12), and it is easy to conclude from here;

Or t = (ab) where 1 < a < b: this is what we assume from now on.

Because G is transitive, it must contain an element o such that o(a) = 1, but then oto™! =
(1o(b)) and we are back in the previous case.

Q 7. We look at the polynomial modulo small primesﬁ Modulo p = 2 we get:

3Notation: [n] = {1,2,...,n} is the set with n elements.

4Tn this and the next questions we use the following result which was proved in classs THEOREM
Let f(X) € Z[X] be monic of degree n, p > 1 a prime such that the reduction mod p f(X) € F,[X] has
distinct roots and factors as a product of irreducible factors of degree nq,...,ng. Then the Galois group
G of the splitting field @ C L of f contains a permutation of the roots of f whose cycle decomposition is

(n1)(n2) -+ - (nk).



f(z) =2® —122* + 152° — 62° + 150 + 12 = z(2° + 2 + 1) mod 2

where the second polynomial r(z) = x° + 22 + 1 is irreducible because if it weren’t it would
split an irreducible degree two polynomial, but the only such polynomial is 2 + 2 + 1 which
does not divide into r(z) (direct inspection). By the theorem in the footnote, the Galois
group G contains a 5-cycle.

Eisenstein at p = 3 shows that f(x) is irreducible in Q[z] and in turn this implies that G
is transitive.

Next:
f@)=(x+1)(z+2)(z+3)(z+4)(z* +3) mod b

thus by the theorem in the footnote GG contains a transposition.
By Question 6 G = Gg.

Q 8. (a) Let us first consider the polynomial in Fy[z]. Clearly x = 1 is a root of f(x) and a
small calculation shows

P tr+l=(r+1)(2*+2°+1) in Fyfz]

and then z° + 1z + 1 € Fy[z] is irreducible because it has no roots in Fy (just plug in x = 0
and = 1).

Next, we work in Fs[z]. A quick inspection shows that f(z) has no roots in Fs: just plug
x =0,1,—1. To show that the polynomial f(x) € F3[z] is irreducible, we show that it is
not divisible by any of the three irreducible degree 2 polynomial in F3[z]: these are:

2?41, *4r-1, 2*—z-1
Performing three long divisions in F3[x] we see:

e+ l= (2 + 1) (@) x4+ 1

(
P +rt+l=(@"+z-1)(2"—2)+1
(

et l=@" -1 +2) -2 +1

these calculations show that f is irreducible in F3x].

(b) A result proved in class implies that the Galois group G of the splitting field Q C K

contains a 3-cycle and a 4-cycle. If a subgroup G of &, contains a 3-cycle and a 4-cycle
then G = G4. (See Question 9 below.) Therefore, G = &,.

Q 9. (a) First, working modulo 2
f(X)=X"+3X +1 € FyX]

is irreducible. Indeed, by inspection, it does not have a root in Fy, and it is not divisible by
the only irreducible degree 2 monic polynomial 22 +x + 1 € Fy[X]. In fact long division gives

X'+ X+1=(X*+X+1)(X*+X)+1
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Next, it is easy to factor f(X) mod 5:|ﬂ
fX) =X -D(XP+X?+ X —1) € F5[X]
where the degree 3 factor is irreducible because, by inspection, it has no root in 5.

(b) Suppose that G C &, contains a 4-cycle and a 3-cycle. Let the 4-cycle be s = (abed).
Note that we can write s = (dabc), etc. Thus, we may assume that the 3-cycle ¢ fixes the last
letter d in the 4-cycle. Now either ¢ = (abc) or t = (acb), but then t* = (abc). The conclusion
is that we may assume s = (1234), ¢t = (123). You take it from here.

(c) By Part (a) and the theorem in the footnote, the Galois group contains a 4-cycle and
a 3-cycle hence, by Part (b) it must be all of &,.

Q 10. With all the hints and the examples, this should not be too hard. You do it (or else
ignore this question).

Q1l. (a) 2 —1=(z—D(z+1)(z*+ 2+ 1)(2? —x+ 1) and

14+1iV3
‘=T

Since Q C Q(() is the splitting field of ®g(x), we have [Q(() : Q] = 2.

is a root of ®g(z) = 2> —z +1 € Q[z]

(b) The polynomial 2°+3 € Q[z] is irreducible by the Eisenstein criterion. By an elementary
fact on fields, if @ € K is a root, that is a® = —3, then [Q(a) : Q] = 6. Now 8 = a3
satisfies:

52 = _37
in other words, § = +i /3 and we have a tower of fields:
QCcQ(¢) =Q(iv3) c Q(«)
Since K = Q(¢, ) and ¢ € Q(«), we have in fact K = Q(«), so from above [K : Q] = 6.

The Galois group G permutes the roots of f(z) = 2% + 3 so consider 0 € G, then
o(a) = (*a for a unique k € Z/6Z, and — ideally — I would like you to have checked
that the assignment o + k is an isomorphism G = Z/67Z. (It is an injective group
homomorphism and |G| = 6.)

(c) As before 2% — 3 € Q[z] is irreducible. Let a € R, a% = 3. As before [Q(a) : Q] = 6 but
now, because Q(a) C R, ¢ € Q(«) and Pg(x) remains irreducible in Q(«). We have a

diagram of fields

SWorking mod 3 is not going to lead to useful information: it is clear by inspection that f(X) has no root
in F3 and then either f(X) is irreducible (no useful conclusion) or it splits into two quadratic polynomials
(again no useful conclusion).

V3)




The diagram shows that [K : Q] = 12. The situation at this point is similar to z* — 2 €
Q[z] — which was discussed at length in class — and you can treat it in a similar fashion:
an element o € G is completely determined once you know: o(«) (6 possibilities) and o(()
(two possibilities) for a total of 12 possibilities. Because |G| = 12 all these possibilities
are realised, and it is not hard to see that one gets the dihedral group Ds.

Q 12. I am sorry, I can’t write this down for you. You do it: it is fun!



