M3P11 (and M4P11, M5P11) Galois Theory, Solutions to Worksheet 4

Alessio Corti

28th April 2020

Q 1. (i) If $p(x)$ is irreducible over E and has a root in $M \cap N$, then it has a root in M and a root in N, and hence splits completely in both M and N. So all the roots of $p(x)$ in F are in both M and N, and hence in $M \cap N$. Hence $M \cap N$ is normal.
(ii) If M is the splitting field of $f(x)$ and N is the splitting field of $g(x)$ then $M N$ is the splitting field of $f(x) g(x)$ (not hard to check). Hence $M N$ is normal.

Q 2. This is an unreasonably difficult question, but let's at least see what I can do 1
(a) Pick $\lambda_{1}, \ldots, \lambda_{n} \in L$ such that $L=K\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. For all $i=1, \ldots, n$, let $f_{i}(x) \in K[x]$ be the minimal polynomial of λ_{i} over K, let

$$
f(x)=\prod_{i=1}^{n} f_{i}(x) \in K[x]
$$

and let $L \subset \Omega$ be the splitting field of $f(x)$ now thought of as a polynomial in $L[x]$. Composing $K \subset L$ and $L \subset \Omega$ we have $K \subset \Omega$ and It is pretty clear that this is also the splitting field of $f(x)$ over K. (Why?) I claim that $L \subset \Omega$ is a normal closure of $K \subset L$.

To check this I need to verify the two defining properties of a normal closure. The first is just saying that $K \subset \Omega$ is normal, and it is because it is a splitting field.

It remains to verify that Ω is generated over K by the set:

$$
\Lambda=\left\{\sigma\left(\lambda_{i}\right) \mid i=1, \ldots, n, \sigma \in \operatorname{Emb}_{K}(L, \Omega)\right\}
$$

(Please convince yourselves that this is so.) On the other hand we know that Ω is generated over K by the set of the roots of $f(x)$:

$$
Z=\{\mu \in \Omega \mid f(\mu)=0\}
$$

so we will be done if we show that $\Lambda=Z$. Now we know that if λ is a root of f and $\sigma \in \operatorname{Emb}_{K}(L, \Omega)$ then $\sigma(\lambda)$ is also a root of f, that is, $\Lambda \subset Z$. Let us now show that $Z \subset \Lambda$.

[^0]Let $\mu \in \Omega$ be a root of f. Then for some $i=1, \ldots, n \mu$ is a root of f_{i}. We know that there is an embedding

such that $\varphi\left(\lambda_{i}\right)=\mu$; and by Lemma 16 (B) this φ extends to $\widetilde{\varphi}: \Omega \rightarrow \Omega$:

Now consider $\sigma=\widetilde{\varphi}_{\mid L} \in \operatorname{Emb}_{K}(L, \Omega)$; by construction $\sigma\left(\lambda_{i}\right)=\mu$. This shows that $\mu \in \Lambda$ and that $Z \subset \Lambda$ and finishes Part(a).
(b) We need to show that $K \subset \Omega$ is normal.

Claim For all $\lambda \in L$ let $f(x) \in K(x)$ be its minimal polynomial: then $f(x) \in \Omega[x]$ splits completely.

The claim and property 1. imply: Choose $\lambda_{1}, \ldots, \lambda_{n}$ such that $L=K\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and call $f_{i} \in K[x]$ the minimal polynomial of λ_{i}, then Ω is the splitting field of $f=\prod_{i=1}^{n} f_{2}$, and hence $K \subset \Omega$ is normal.

Let us prove the claim. We don't yet $\underset{\sim}{\text { know }}$ that $K \subset \Omega$ is normal, but we can always make a bigger field $\Omega \subset \widetilde{\Omega}$ such that $K \subset \widetilde{\Omega}$ is a normal extension. Now here comes the key point. Composing with the inclusion $\Omega \rightarrow \widetilde{\Omega}$ we obtain a natural inclusion

$$
\operatorname{Emb}_{K}(L, \Omega) \rightarrow \operatorname{Emb}_{K}(L, \widetilde{\Omega})
$$

and this inclusion is a bijection because by 2 . the two sets have the same number $[L: K]_{s}$ of elements. In other words (and this is the key point): every K-embedding $\sigma: L \rightarrow \widetilde{\Omega}$ in fact lands in Ω. Now we are ready to prove the claim. We know that $f(x)$ splits completely in $\widetilde{\Omega}$. Thus, it is enough to show that if $\mu \in \widetilde{\Omega}$ is a root of f, then in fact $\mu \in \Omega$. Arguing as in Part (a) we can construct an embedding $\sigma: L \rightarrow \widetilde{\Omega}$ such that $\sigma(\lambda)=\mu$. But as we said $\sigma(L) \subset \Omega$ so in fact $\mu=\sigma(\lambda) \in \Omega$ and we are done.

Q 3. (a) It's the field of fractions of $k\left[T^{p}\right]$. Or, check explicitly that if $S=T^{p}$ then this is just the field of fractions of $k[S]$. Or check that it's a subset containing 0 and 1 and closed under $+-\times /$.
(b) In fact any subfield of L containing k and T must contain $f(T)$ for any polynomial $f \in k[T]$ and hence it must contain $f(T) / g(T)$ if g is a non-zero polynomial. Hence $L=k(T)$ in the sense that it's the smallest subfield of L containing k and T, so $L=k(T) \subseteq K(T) \subseteq L$ and all inclusions are equalities.

[^1](c) T is a root of the polynomial $x^{p}-T^{p} \in K[x]$.
(d) If $q(x)=x^{p}-T^{p}$ factored in $K[x]$ into two factors f and g of degrees a and b, with $a+b=p$ and $0<a, b<p$, then by rescaling we can assume both factors are monic. Now consider the factorization $q(x)=(x-T)^{p}$ in $L[x]$. This is the factorization of $q(x)$ into primes in $L[x]$, and there's only one prime involved, namely $x-T$. Because $q=f g$ in $L[x]$, we must have $f(x)=(x-T)^{a}$ and $g(x)=(x-T)^{b}$ - anything else would contradict unique factorization. But this means the constant term of $f(x)$ is $\pm T^{a}$ and because $0<a<p$ we know a isn't a multiple of p and hence $\pm T^{a} \notin K$ and so $f(x) \notin K[x]$, a contradiction.
(e) $q(x)$ is irreducible in $K[x]$ and T is a root, so it's the min poly. It's not separable because it is irreducible over K but has repeated roots in L (namely T, p times).
(f) $T \in L$ is not separable over K because its min poly isn't. Hence L / K is not separable, because L contains an element which is not separable over K.

Q 4. (i) If $L=E\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ then for $E \subseteq K \subseteq F$ we have that K contains L iff K contains all the α_{i}. So if $E \subseteq K \subseteq F$ then E contains N iff E contains M and the α_{i} iff E contains M and L; hence N is the smallest subfield of F containing M and L.
(ii) If L is the splitting field of $p(x) \in E[x]$ and M is the splitting field of $q(x) \in E[x]$ (these polynomials exist by normality) then I claim N is the splitting field of $p(x) q(x)$; indeed if the α_{i} are the roots of p and β_{j} are the roots of q then by the first part N is the field generated by the α_{i} and the β_{j}. Now N is finite and normal; moreover each of the α_{i} and the β_{j} are separable over E (as each is contained in either L or M) and hence each time we adjoin one we get a separable extension; finally a separable extension of a separable extension is separable (by comparing degrees and separable degrees).
(iii) If $g \in \operatorname{Gal}(N / E)$ then $g(L)=L$ by 6.7 and hence the restriction of g to L is in $\operatorname{Gal}(L / E)$. Similar for M / E. So we get a map $\operatorname{Gal}(N / E) \rightarrow \operatorname{Gal}(L / E) \times \operatorname{Gal}(M / E)$. This is easily checked to be a group homomorphism. It's injective because anything in the kernel fixes L and M pointwise, so fixes $L M$ pointwise; but $L M=N$.

It's not always surjective though - for example if $L=M$ then it hardly ever is. More generally if $L \cap M \neq E$ then there will be problems. However if $L \cap M=E$ then the map is a bijection.

Q 5. (a) The two polynomials have degree 3 and have no roots in \mathbb{F}_{2} (just plug $x=0,1$) hence they are irreducible.
If $\sigma: K \rightarrow L$ then $\sigma(\alpha)$ is a root of $f(x)$ in L; and $f(x)$ has three roots in L :

$$
\beta+1 ; \quad \beta^{2}+1 ; \quad \beta^{2}+\beta
$$

indeed, for example, we can check directly that:

$$
(\beta+1)^{3}=\beta^{3}+\beta^{2}+\beta+1=\left(\beta^{2}+1\right)+\beta^{2}+\beta+1=\beta=(\beta+1)+1
$$

that is, $\beta+1$ is a root of $f(x)$. The other roots of f are $\operatorname{Fr}_{2}(\beta+1)=\beta^{2}+1$ and $\operatorname{Fr}_{2}\left(\beta^{2}+1\right)=\beta^{4}+1=\beta\left(\beta^{2}+1\right)+1=\beta^{2}+1+\beta+1=\beta^{2}+\beta$. (But one can also check directly.)

A basic result about fields states that a morphism from K to L is the same as a root of $f(x)$ in L and there are 3 of these. As f and g are irreducible we know that K and L
have degree 3 over \mathbb{F}_{2} and we have shown in class that any two finite fields of the same degree over the base field are isomorphic. Since both fields have degree 3 over the base field \mathbb{F}_{2}, all morphisms from K to L are isomorphisms hence there are 3 of these. (This gives another reason why K and L are isomorphic.)
(b) $h(x) \in \mathbb{F}_{2}[x]$ is irreducible because: it has no roots ($\operatorname{plug} x=0$ and $x=1$) in \mathbb{F}_{2} AND it is not divisible by $x^{2}+x+1$, the only irreducible degree two polynomial in $\mathbb{F}_{2}[x]$ - as can be checked by performing long division in $\mathbb{F}_{2}[x]$.
Let $L \subset E$ be the splitting field of $h(x)$ as a polynomial in $L[x]$. The extension $\mathbb{F}_{2} \subset E$ is normal and separable because ALL finite extensions of finite fields are. Clearly E contains the splitting field $\mathbb{F}_{2} \subset F$ of $h(x) \in \mathbb{F}_{2}[x]$:

We know that $h(x) \in \mathbb{F}_{2}[x]$ is irreducible; hence if $\gamma \in F$ is a root of h, then $\left[\mathbb{F}_{2}(\gamma)\right.$: $\left.\mathbb{F}_{2}\right]=4$. We know that every finite extension of a finite field is normal and separable, therefore $\mathbb{F}_{2} \subset F$ is normal and hence (by a known characterisation of normal extensions) $h(x)$ splits completely in $\mathbb{F}_{2}(\gamma)[x]$ - because it is irreducible over \mathbb{F}_{2} and has a root in $\mathbb{F}_{2}(\gamma)$ - hence actually $F=\mathbb{F}_{2}(\gamma)$ and then, as indicated in the diagram, $\left[F: \mathbb{F}_{2}\right]=$ $\left[\mathbb{F}_{2}(\gamma): \mathbb{F}_{2}\right]=4$.
The tower law implies that $3 \mid\left[E: \mathbb{F}_{2}\right]$ and $4 \mid\left[E: \mathbb{F}_{2}\right]$ hence $12 \mid\left[E: \mathbb{F}_{2}\right]$. But clearly also $E=L(\gamma)$ and then $[E: L]$ is the degree of the minimal polynomial of γ over L, which is a factor of h, hence $\left[E: \mathbb{F}_{2}\right]=[E: L]\left[L: \mathbb{F}_{2}\right] \leq 12$. So in fact $\left[E: \mathbb{F}_{2}\right]=12 ;[E: L]=4$, $h \in L[x]$ is the minimal polynomial of γ and it is therefore irreducible.
Q 6. (This is a pure algebra question.) The $(n-1)$-cycle c must fix an element of $[n]^{3}$ which we may well assume to be 1 , and then after re-labelling the elements of $[n]$ we may assume that $c=(23 \ldots n)$. Let t be the transposition; then:
Either t involves 1, and then by further relabelling elements we may assume $c=(23 \cdots n)$, $t=(12)$, and it is easy to conclude from here;

Or $t=(a b)$ where $1<a<b$: this is what we assume from now on.
Because G is transitive, it must contain an element σ such that $\sigma(a)=1$, but then $\sigma t \sigma^{-1}=$ $(1 \sigma(b))$ and we are back in the previous case.
Q 7. We look at the polynomial modulo small primes $\sqrt{4}^{\text {Modulo } p=2}$ we get:

[^2]$$
f(x)=x^{6}-12 x^{4}+15 x^{3}-6 x^{2}+15 x+12 \equiv x\left(x^{5}+x^{2}+1\right) \quad \bmod 2
$$
where the second polynomial $r(x)=x^{5}+x^{2}+1$ is irreducible because if it weren't it would split an irreducible degree two polynomial, but the only such polynomial is $x^{2}+x+1$ which does not divide into $r(x)$ (direct inspection). By the theorem in the footnote, the Galois group G contains a 5 -cycle.

Eisenstein at $p=3$ shows that $f(x)$ is irreducible in $\mathbb{Q}[x]$ and in turn this implies that G is transitive.

Next:

$$
f(x) \equiv(x+1)(x+2)(x+3)(x+4)\left(x^{2}+3\right) \quad \bmod 5
$$

thus by the theorem in the footnote G contains a transposition.
By Question $6 G=\mathfrak{S}_{6}$.
Q 8. (a) Let us first consider the polynomial in $\mathbb{F}_{2}[x]$. Clearly $x=1$ is a root of $f(x)$ and a small calculation shows

$$
x^{4}+x^{2}+x+1=(x+1)\left(x^{3}+x^{2}+1\right) \quad \text { in } \quad \mathbb{F}_{2}[x]
$$

and then $x^{3}+x+1 \in \mathbb{F}_{2}[x]$ is irreducible because it has no roots in \mathbb{F}_{2} (just plug in $x=0$ and $x=1$).
Next, we work in $\mathbb{F}_{3}[x]$. A quick inspection shows that $f(x)$ has no roots in \mathbb{F}_{3} : just plug $x=0,1,-1$. To show that the polynomial $f(x) \in \mathbb{F}_{3}[x]$ is irreducible, we show that it is not divisible by any of the three irreducible degree 2 polynomial in $\mathbb{F}_{3}[x]$: these are:

$$
x^{2}+1, \quad x^{2}+x-1, \quad x^{2}-x-1
$$

Performing three long divisions in $\mathbb{F}_{3}[x]$ we see:

$$
\begin{aligned}
& x^{4}+x^{2}+x+1=\left(x^{2}+1\right)\left(x^{2}\right)+x+1 \\
& x^{4}+x^{2}+x+1=\left(x^{2}+x-1\right)\left(x^{2}-x\right)+1 \\
& x^{4}+x^{2}+x+1=\left(x^{2}-x-1\right)\left(x^{2}+x\right)-x+1
\end{aligned}
$$

these calculations show that f is irreducible in $\mathbb{F}_{3}[x]$.
(b) A result proved in class implies that the Galois group G of the splitting field $\mathbb{Q} \subset K$ contains a 3 -cycle and a 4 -cycle. If a subgroup G of \mathfrak{S}_{4} contains a 3 -cycle and a 4 -cycle then $G=\mathfrak{S}_{4}$. (See Question 9 below.) Therefore, $G=\mathfrak{S}_{4}$.

Q 9. (a) First, working modulo 2,

$$
f(X) \equiv X^{4}+3 X+1 \in \mathbb{F}_{2}[X]
$$

is irreducible. Indeed, by inspection, it does not have a root in \mathbb{F}_{2}, and it is not divisible by the only irreducible degree 2 monic polynomial $x^{2}+x+1 \in \mathbb{F}_{2}[X]$. In fact long division gives

$$
X^{4}+X+1=\left(X^{2}+X+1\right)\left(X^{2}+X\right)+1
$$

Next, it is easy to factor $f(X) \bmod 5 \cdot 5$

$$
f(X) \equiv(X-1)\left(X^{3}+X^{2}+X-1\right) \in \mathbb{F}_{5}[X]
$$

where the degree 3 factor is irreducible because, by inspection, it has no root in \mathbb{F}_{5}.
(b) Suppose that $G \subset \mathfrak{S}_{4}$ contains a 4 -cycle and a 3 -cycle. Let the 4 -cycle be $s=(a b c d)$. Note that we can write $s=(d a b c)$, etc. Thus, we may assume that the 3 -cycle t fixes the last letter d in the 4 -cycle. Now either $t=(a b c)$ or $t=(a c b)$, but then $t^{2}=(a b c)$. The conclusion is that we may assume $s=(1234), t=(123)$. You take it from here.
(c) By Part (a) and the theorem in the footnote, the Galois group contains a 4-cycle and a 3 -cycle hence, by Part (b) it must be all of \mathfrak{S}_{4}.

Q 10. With all the hints and the examples, this should not be too hard. You do it (or else ignore this question).
Q 11. (a) $x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$ and

$$
\zeta=\frac{1+\mathrm{i} \sqrt{3}}{2} \quad \text { is a root of } \quad \Phi_{6}(x)=x^{2}-x+1 \in \mathbb{Q}[x]
$$

Since $\mathbb{Q} \subset \mathbb{Q}(\zeta)$ is the splitting field of $\Phi_{6}(x)$, we have $[\mathbb{Q}(\zeta): \mathbb{Q}]=2$.
(b) The polynomial $x^{6}+3 \in \mathbb{Q}[x]$ is irreducible by the Eisenstein criterion. By an elementary fact on fields, if $\alpha \in K$ is a root, that is $\alpha^{6}=-3$, then $[\mathbb{Q}(\alpha): \mathbb{Q}]=6$. Now $\beta=\alpha^{3}$ satisfies:

$$
\beta^{2}=-3,
$$

in other words, $\beta= \pm \mathrm{i} \sqrt{3}$ and we have a tower of fields:

$$
\mathbb{Q} \subset \mathbb{Q}(\zeta)=\mathbb{Q}(\mathrm{i} \sqrt{3}) \subset \mathbb{Q}(\alpha)
$$

Since $K=\mathbb{Q}(\zeta, \alpha)$ and $\zeta \in \mathbb{Q}(\alpha)$, we have in fact $K=\mathbb{Q}(\alpha)$, so from above $[K: \mathbb{Q}]=6$. The Galois group G permutes the roots of $f(x)=x^{6}+3$ so consider $\sigma \in G$, then $\sigma(\alpha)=\zeta^{k} \alpha$ for a unique $k \in \mathbb{Z} / 6 \mathbb{Z}$, and - ideally - I would like you to have checked that the assignment $\sigma \mapsto k$ is an isomorphism $G \cong \mathbb{Z} / 6 \mathbb{Z}$. (It is an injective group homomorphism and $|G|=6$.)
(c) As before $x^{6}-3 \in \mathbb{Q}[x]$ is irreducible. Let $\alpha \in \mathbb{R}, \alpha^{6}=3$. As before $[\mathbb{Q}(\alpha): \mathbb{Q}]=6$ but now, because $\mathbb{Q}(\alpha) \subset \mathbb{R}, \zeta \notin \mathbb{Q}(\alpha)$ and $\Phi_{6}(x)$ remains irreducible in $\mathbb{Q}(\alpha)$. We have a diagram of fields

[^3]The diagram shows that $[K: \mathbb{Q}]=12$. The situation at this point is similar to $x^{4}-2 \in$ $\mathbb{Q}[x]$ - which was discussed at length in class - and you can treat it in a similar fashion: an element $\sigma \in G$ is completely determined once you know: $\sigma(\alpha)$ (6 possibilities) and $\sigma(\zeta)$ (two possibilities) for a total of 12 possibilities. Because $|G|=12$ all these possibilities are realised, and it is not hard to see that one gets the dihedral group \mathbb{D}_{12}.

Q 12. I am sorry, I can't write this down for you. You do it: it is fun!

[^0]: ${ }^{1}$ Don't worry too much if you don't follow the proof. I forbid you to spend more than five hours trying to understand this.

[^1]: ${ }^{2}$ this requires some argument that I am not spelling out: please convince yourself that this is true

[^2]: ${ }^{3}$ Notation: $[n]=\{1,2, \ldots, n\}$ is the set with n elements.
 ${ }^{4}$ In this and the next questions we use the following result which was proved in class: THEOREM Let $f(X) \in \mathbb{Z}[X]$ be monic of degree $n, p \geq 1$ a prime such that the reduction $\bmod p \bar{f}(X) \in \mathbb{F}_{p}[X]$ has distinct roots and factors as a product of irreducible factors of degree n_{1}, \ldots, n_{k}. Then the Galois group G of the splitting field $\mathbb{Q} \subset L$ of f contains a permutation of the roots of f whose cycle decomposition is $\left(n_{1}\right)\left(n_{2}\right) \cdots\left(n_{k}\right)$.

[^3]: ${ }^{5}$ Working mod 3 is not going to lead to useful information: it is clear by inspection that $f(X)$ has no root in \mathbb{F}_{3} and then either $f(X)$ is irreducible (no useful conclusion) or it splits into two quadratic polynomials (again no useful conclusion).

