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Q 1. Prove that Q ⊂ Q(
√

2,
√
−3, 3
√

5) is a normal extension. What is its degree?

Q 2. Establish (with proofs) whether the following extensions of Q are normal or not:

(i) Q(
√

6);

(ii) Q(
√

2,
√

3);

(iii) Q(71/3);

(iv) Q(71/3, e2πi/3);

(v) Q(
√

1 +
√

7);

(vi) Q(
√

2 +
√

2).

Q 3. (a) Prove that if E ⊂ F and [F : E] = 2 then the extension is normal.
(b) Prove that every index 2 subgroup of a group G is normal.

Q 4. Say E = Q and let F be the splitting field of xp − 1, where p is an odd prime number.

(i) What is [F : E]? What is Gal(F/E)?

(ii) Prove that there is a unique subfield K of F with [K : Q] = 2 [Hint: Part (i), plus the
fact that (Z/pZ)× is cyclic]. Show that all such extensions are of the form K = Q(

√
n) where

n ∈ Z and |n| is squarefree.1 Figure out n when p = 3. Figure out n when p = 5 [Hint: what
is cos(2πi/5)? ]. What do you think the answer is in general? (This is a number-theoretic
question rather than a field-theoretic one so don’t get frustrated if you see a good-looking
statement but you can’t prove it: there are tricks but they’re tough to spot even for me.)

Q 5. (i) Say a, b > 1 are distinct squarefree integers. Prove x2 − a is irreducible, so Q(
√
a)

has degree 2 over Q. Now prove that
√
b 6∈ Q(

√
a).

(ii) Let F be the splitting field of (x2 − a)(x2 − b) over Q. What is Gal(F/Q)? Use the
fundamental theorem of Galois theory to find all the fields K with Q ⊆ K ⊆ F . Which ones
are normal over Q?

∗v2 28th April 2020
1A natural number is squarefree if it is the product of distinct primes.
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(iii) Prove that F = Q(
√
a +
√
b). [Hint: figure out which subgroup of the Galois group

this field corresponds to.]

(iv) Let p, q and r be distinct primes. Prove
√
r 6∈ Q(

√
p,
√
q). [Hint: use one of the

previous parts.]

(v) Conclude that if F = Q(
√
p,
√
q,
√
r) then [F : Q] = 8. What is Gal(F/Q)?

(vi) Use the fundamental theorem of Galois theory to write down all the intermediate
subfields between Q and F . If you can’t then just write down the subfields E of F with
[E : Q] = 2.

(vii) Show that (notation as in the previous part) F = Q(
√
p+
√
q +
√
r).

(viii) Prove that if p1, p2,. . . ,pn are distinct primes, then Q(
√
p1,
√
p2, . . . ,

√
pn) has degree

2n over Q, and equals Q(
√
p1 +

√
p2 + · · ·+√pn).

Q 6. Say r =
11
√

51/3 +
√

81/5 + 6 + 91/7. Find a sequence of fields Q = F0 ⊆ F1 ⊆ F2 ⊆
· · · ⊆ Fn with r ∈ Fn and such that for all i we have Fi = Fi−1(αi) with αni

i ∈ Fi−1 for some
positive integer ni.

Q 7. Fix a normal and separable extension of fields K ⊂ L and let G be the Galois group.
Recall the standard notation of the Galois correspondence: for K ⊂ F ⊂ L, F † ⊂ G is the
group that fixes F ; for H ≤ G, H? is the fixed field of H.2

(a) LetK ⊂ F be an intermediate field. LetX = EmbK(F,L).3 Observe that composition
of functions gives a natural (left) action of G on X. Show that this action is transitive, that
is, for all x, y ∈ X there is g ∈ G with gx = y. Why does this generalise the statement
about the transitive action of G on the roots of a polynomial? For x in X denote by G the
stabiliser of x:

Gx = {x ∈ G | gx = x}

Prove that Gx = x†, i.e., the group that fixes F where F is viewed as an intermediate field
via the K-inclusion x : F → L.

(b) Let K ⊂ F ⊂ L be an intermediate field and H = F † the corresponding subgroup,
i.e., H ≤ G is the subgroup that fixes F and F = H? is the fixed field of H. Show that
K ⊂ F is normal if and only if H ≤ G is a normal subgroup. Show that in this case K ⊂ F
is separable (obvious) and EmbK(F, F ) = H\G.

(c) More generally show that for all K ⊂ F ⊂ G and H = F †:

EmbK(F, F ) = H\NG(H)

where NG(H) = {g ∈ G | gHg−1 = H} is the normaliser of H in G.4 (By construction
H ≤ N(H) is a normal subgroup and we are allowed to form the quotient group H\N(H).)

(d) Here and below, for H1, H2 ≤ G, write

N(H1, H2) = {g ∈ G | gH1g
−1 ⊃ H2}

2This is a substantially revised version of the original question.
3Feel free to assume that X is nonempty.
4Those of you who are taking Algebraic Topology should compare this statement with a similar statement

in the theory of covering spaces.
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(I don’t know what this thing is called in Algebra.) Show that the assignment

g, h1, g 7→ gh1

defines a right action N(H1, H2)×H1 → N(H1, H2). Here and below, denote by

Mor(H2, H1) = N(H1, H2)/H1

the quotient set.

Now suppose given two intermediate fields, K ⊂ F1 ⊂ L and K ⊂ F2 ⊂ L. As usual for
clarity denote by x1 : F1 → L and x2 : F2 → L the two inclusions, and let H1 = x†1, H2 = x†2.
Prove that

EmbK(F1, F2) = Mor(H1, H2)

(e) In this Part, G is a group and H1, H2, etc. are subgroups of G. Show that the function:5

T : N(H1, H2)→ Fun(H2, H1)

where N(H1, H2) is as in Part (d) and T : g 7→ Tg, the function such that

Tg(h) = g−1hg,

in fact lands in the set Hom(H2, H1) of group homomorphisms from H2 to H1.
Note that the set N(H1, H2) is in general not a group, but that there is a natural com-

position law:
N(H1, H2)×N(H2, H3)→ N(H1, H3)

Recall that the centraliser of H ≤ G is the subgroup

C(H) = {g ∈ G | for all h ∈ H, hg = gh}

show that g, z 7→ gz defines a left action C(H2) × N(H1, H2) → N(H1, H2) of C(H1) on
N(H1, H2), and that for all g1, g2 ∈ N(H1, H2), Tg1 = Tg2 if and only if there exists z ∈ C(H2)
such that g2 = zg1.

(f †) As in Part (b), for subgroups H1, H2 of G write:

Mor(H1, H2) = N(H2, H1)/H2

the quotient set. Show that there is a natural composition Mor(H1, H2) ×Mor(H2, H3) →
Mor(H1, H3) that makes the set of subgroups of G into a category.

(g †) Show that the Galois correspondence is a contravariant equivalence of categories,
from the category whose objects are intermediate fields K ⊂ F ⊂ L, and where the set of
morphisms from F1 to F2 is EmbK(F1, F2), to the category of subgroups defined in Part (e).
In other words we have identifications

EmbK(F1, F2) = Mor(H2, H1)

compatible with composition.

5For X1, X2 sets, I denote by Fun(X1, X2) the set of functions from X1 to X2.
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Q 8. Let K ⊂ F be a field extension and K ⊂ L a normal field extension. Assume given
two K-embeddings x1 ∈ EmbK(F,L), x2 ∈ EmbK(F,L):

L L

F

x1

``

x2

??

K

OO

(so I am saying that xi|K is the inclusion of K in L given at the beginning).
(a) Show that there is a K-embedding y : L→ L such that y ◦ x1 = x2.
(b) In the same situation as above, let now F ⊂ E be a field extension. For i = 1, 2 denote

by Embxi(E,L) the set of field homomorphisms x̃ : E → L such that x̃|F = xi. Use part
(a) to produce a bijective correspondence from Embx1(E,L) to Embx2(E,L). (In particular,
this shows that one set is empty if and only if the other is empty.)

Q 9. Let K ⊂ F ⊂ L be a tower of field extensions. As we stated in class, it is immediate
from the definition that: If K ⊂ L is normal, then F ⊂ L is also normal.

(a) If K = Q, F = Q(21/3) and L = Q(21/3, ω) with ω = e2πi/3, then show that K ⊂ L is
normal, but K ⊂ F is not normal.

(b) If K = Q, F = Q(
√

2) and E = Q(21/4), show that K ⊂ F and F ⊂ L are normal,
but K ⊂ L is not normal.

(c) Say H ⊆ K ⊆ G are groups. Prove that if H is normal in G then H is normal in
K. Give an example of groups with H is normal in G but K not normal in G. Now give an
example with H normal in K, K normal in G, but H not normal in G. Now wonder whether
this is all a coincidence or not.
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