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Q 1. Write K = Q(
√

2,
√
−3, 3
√

5). Observe that

X3 − 5 = (x− 3
√

5)(x− ω 3
√

5)(x− ω2 3
√

5)

where

ω =
−1 +

√
−3

2

is a primitive cube root of unity. It follows from this that K is the splitting field of the
polynomial

f(X) = (X2 − 2)(X3 − 5) ∈ Q[X]

indeed the polynomial splits completely in K and K is generated by the roots (if 3
√

5 and
ω 3
√

5 are both in F , then clearly ω is also in F ). Hence Q ⊂ L is a normal extension.

Now let us count degrees. First, let us state that
√

2 6∈ Q, hence [Q(
√

2) : Q] = 2. Next
consider the field L = Q(

√
−3,
√

2). It is clear that, say,
√
−3 6∈ Q(

√
2)—for example,

√
−3

is purely imaginary while Q(
√

2) ⊂ R. If you don’t like this, suppose for a contradiction that√
−3 ∈ Q(

√
2), that is there exist rational numbers x, y ∈ Q such that

−3 = (x+ y
√

2)2 = x2 + 2y2 + 2xy
√

2

since this is an identity in a 2-dimensional vector space over Q with basis 1,
√

2 we must have
either x = 0 or y = 0. If y = 0, then x2 = −3, x ∈ Q leads easily to a contradiction. If x = 0
then −3 = 2y2. Writing y = p/q with p, q coprime integers, we have

−3q2 = 2p2

and we easily get a contradiction working 2− or 3−adically.1 By a simple application of the
tower law then [L : Q] = 4.

1I am deliberately avoiding reaching a contradiction by means of the order structure of the rationals: the
left hand side is negative, the right hand side is positive. This would be reproducing the argument in terms
of imaginary numbers that we wanted to avoid.
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Finally let us consider our field K = L( 3
√

5) and the diagram of field extensions:

K

L

@@

Q( 3
√

5)

cc

Q

<<^^

I claim that x3 − 5 is irreducible in L[X] and hence [K : L] = 3 and then [K : Q] = [K :
L][L : Q] = 3 × 4 = 12. Indeed if x3 − 5 were not irreducible in L[X] then it would have
a root α ∈ L; and then from Q ⊂ Q(α) ⊂ L we would conclude from the tower law that
[Q(α) : Q] = 3 divides [L : Q] = 4, a contradiction. Hence [K : Q] = 12.

Q 2. (i) Q(
√

6) is the splitting field of the polynomial x2 − 6 and is hence normal over Q.

(ii) Q(
√

2,
√

3) is the splitting field of (x2 − 2)(x2 − 3) and is hence normal.

(iii) Q(71/3) contains one, but not all, roots of the irreducible polynomial x3− 7 (because
the other roots are not even real), so it is not normal over Q.

(iv) Q(71/3, e2πi/3) is the splitting field of x3 − 7 and is hence normal.

(v) Q(
√

1 +
√

7) is not normal over Q. Here’s why. If α =
√

1 +
√

7 then α2 − 1 =
√

7,
so (α2 − 1)2 = 7 and α is hence a root of x4 − 2x2 − 6 = 0. We can spot the four complex

roots of this polynomial; they are ±
√

1±
√

7 (just substitute in to see that all of these are
roots). Two of these numbers are real and two pure imaginary; in particular not all of them

are in Q(
√

1 +
√

7), which is a subfield of the reals. However, x4− 2x2− 6 = 0 is irreducible
over Q (one can use the Eisenstein criterion, which I haven’t done yet, or argue in an adhoc
manner, or, at this point, use the theory developed in class on biquadratic extensions), so

this polynomial has some but not all roots in Q(
√

1 +
√

7) which is hence not normal over
Q.

(vi) Q(
√

2 +
√

2) is normal over Q, despite the formal similarity with part (v). If α =√
2 +
√

2 then (as in the previous question) we see (α2 − 2)2 = 2 and hence α is a root of

x4− 4x2 + 2 = 0. This polynomial is irreducible by Eisenstein, but in this case Q(
√

2 +
√

2)

is actually its splitting field. For two of its roots are ±α and the other two are ±
√

2−
√

2

and if β =
√

2−
√

2 then we see αβ =
√

2 = α2 − 2, and hence β = (α2 − 2)/α ∈ Q(α)! So
the extension is a splitting field and hence normal.

Q 3. (a) If [F : E] = 2 let α ∈ F \ E, then consider the tower of field extensions E ⊂
E(α) ⊂ F . As a simple consequence of the tower law we get that F = E(α). The minimal
polynomial of α over E has degree 2:

f(X) = X2 + aX + b ∈ E[X]

and X −α divides f(X) in F [X] hence f(X) splits completely in F , hence F is the splitting
field of f(X) hence E ⊂ F is a normal extension.
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(b) Suppose that H ≤ G has index two. This means that there are two elements (cosets)
in the quotient set X = H\G and also in the quotient set Y = G/H. Let g ∈ G be any
element: if g ∈ H then clearly g−1Hg = H, so let us assume that g 6∈ H. It must be the case
that Hg = G \H AND gH = G \H; therefore Hg = gH.2

Q 4. (i) We know xp−1 = (x−1)(1+x+x2 + · · ·+xp−1), and f(x) := 1+x+x2 + · · ·+xp−1

is irreducible over Q (by Eisenstein after a coordinate change). Hence if ζ = e2π i/p then f(x)
must be the min poly of ζ. Note that the roots of p(x) are just the roots of xp− 1 other than
x = 1, so they’re ζj for 1 ≤ j ≤ p− 1. Moreover if F = Q(ζ) then [F : Q] = deg(f) = p− 1,
and K contains ζj for all j, so xp − 1 splits completely in K. Hence K is the splitting field
of xp − 1 and it has degree p− 1.

Now F/Q is finite, normal and separable, so the fundamental theorem applies, so we know
Gal(F/Q) will have size p − 1. If τ ∈ Gal(F/Q) then, because F = Q(ζ), τ is determined
by τ(ζ), which is a root of τ(f) = f , so is ζj for some 1 ≤ j ≤ p − 1. It’s perhaps not
immediately clear that, given j, some field automorphism τ of F sending ζ to ζj will exist
– but it has to exist because we know there are p− 1 field automorphisms. So the elements
of the Galois group can be called τj for 1 ≤ j ≤ p − 1. The remaining question is what
this group is. We can figure out the group law thus: τi ◦ τj – where does this send ζ? Well
τj(ζ) = ζj, and τi(ζ) = ζ i so τi(ζ

j) = ζ ij as τi is a field homomorphism. Note finally that ζ ij

only depends on ij mod p, as ζp = 1. So if we identify Gal(F/Q) with {1, 2, . . . , p− 1} then
the group law is just “multiplication mod p” , and we see Gal(F/Q) ∼= (Z/pZ)×.

If you will, check that our isomorphism (which seemed to depend on a choice of ζ, our pth
root of unity) is in fact independent of that choice, so Gal(F/Q) is canonically isomorphic to
(Z/pZ)×. The notation in mathematics for a canonical isomorphism is “=”, so we can write
Gal(F/Q) = (Z/pZ)× in this situation. This concludes part (i). I want to add to this that,
in fact, (Z/pZ)× ∼= Cp−1 is always a cyclic group. (This is a non-completely trivial fact. In
general, every finite subgroup of the multiplicative group of a field is cyclic. I don’t normally
like to prove this result — sometimes I give it as a worksheet question — but I encourage
you to look it up.)

As for part (ii), I discuss some ideas without giving a complete proof.
When p = 3, K = F and hence K = Q(

√
−3).

When p = 5, I claim thatK = Q(
√

5). Indeed from part (i)G = (Z/5Z)× = {1, 2,−2,−1}.
It is clear that H = {1,−1} ⊂ G has index 2 and that K = H? in the notation of the Galois

correspondence. Writing as in part (i) ζ = e
2π i
5 , it is clear that

α = ζ +
1

ζ
∈ H?

and it is reasonable to guess K = Q(α). It is easy to finish from here:

α2 + α− 1 = 1 + ζ + ζ2 + ζ3 + ζ4 = 0

hence α = −1+
√
5

2
and from this we conclude that K = Q(

√
5).

2You are supposed to “see” that the two parts of the question correspond under the Galois correspondence.
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For p general, writing as above ζ = e
2πi
p , and denoting by H ≤ (Z/pZ)× the unique

subgroup of index 2, we want to evaluate something like∑
h∈H

h(ζ)

because this thing being the average over all of H is manifestly H-invariant. The next
observation is that H is the image of the “squaring homomorphism”

(Z/pZ)× 3 k 7→ k2 ∈ (Z/pZ)×

so we are led to evaluating:

α =

p−1
2∑

k=0

e
2πik2

p

You can find this thing in number theory books under the name of “quadratic Gauss sum”
and the upshot is

K =

{
Q(
√
−p) if p ≡ 3 mod 4

Q(
√
p) if p ≡ 1 mod 4

(The exact evaluation of the Gauss sum is a bit tricky, but you may be able to evaluate it
up to sign, and this is enough to determine K. This, however, is a number theory question,
not a Galois theory question.)

Q 5. (i) a > 1 so a has a prime divisor p; now use Eisenstein. Or use uniqueness of
factorization to prove

√
a 6∈ Q.

Next, if
√
b ∈ Q(

√
a) then write

√
b = x + y

√
a; square, and use the fact that

√
a is

irrational to deduce that 2xy = 0. Hence either y = 0 (contradiction, as
√
b 6∈ Q) or x = 0

(contradiction, as we can write ab = cd2 with c squarefree, and a 6= b so c 6= 1, and again√
c 6∈ Q).

(ii) F = Q(
√
a,
√
b) and the preceding part, plus the tower law, shows that [F : Q] = 4.

Now F is a splitting field in characteristic zero, so it’s finite, normal and separable. By
the fundamental theorem, Gal(F/Q) must be a finite group of order 4, so it’s either C4 or
C2×C2. There are lots of ways of seeing that it is actually C2×C2. Here are two that spring
to mind: firstly, C4 only has one subgroup of order 2, whereas F has at least two subfields
of degree 2 over Q, namely Q(

√
a) and Q(

√
b), so by the correspondence in the fundamental

theorem, C4 is ruled out. And another way – if we set K = Q(
√
a) then F/K is normal and

separable and [F : K] = 2, so Gal(F/K) is cyclic of order 2 by the fundamental theorem,
and the Galois group permutes the roots of x2− b. We deduce that there must be an element
of Gal(F/K), and thus a field automorphism ga of F , that sends +

√
b to −

√
b and fixes

√
a

(as it fixes K). Similarly there’s an automorphism gb of F that sends +
√
a to −

√
a and fixes√

b. This gives us two elements of order 2 in Gal(F/Q), which must then be C2 × C2. Of
course their product, gagb, sends

√
a to −

√
a and

√
b to −

√
b, so it fixes

√
ab and is the third

non-trivial element of Gal(F/Q).
The subgroups of C2 × C2 are: the subgroup of order 1 (corresponding to F ), the group

itself, of order 4 (corresponding to Q) (both of these because the Galois correspondence is
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order-reversing, so i.e. sends the biggest things to the smallest things and vice-versa), and
then there are three subgroups of order 2, corresponding to Q(

√
a), Q(

√
b) and Q(

√
ab). One

way to see this for sure is, for example, that ga fixes
√
a, so the subfield corresponding to

〈ga〉 definitely contains
√
a, but has degree 2 over Q by the tower law and so must be Q(

√
a).

Arguing like this will show everything rigorously.
Finally, all of the subfields are normal over Q, because all subgroups of Gal(F/Q) are

normal (as it’s abelian).

(iii) Every element of Gal(F/Q) sends
√
a+
√
b to something else! (for example ga sends

it to
√
a −
√
b). So the subgroup of Gal(F/Q) corresponding to Q(

√
a +
√
b) must be the

identity, which corresponds to F , and so F = Q(
√
a+
√
b).

(iv) If
√
r ∈ Q(

√
p,
√
q) then Q(

√
r) must be one of the quadratic subfields of Q(

√
p,
√
q),

and hence it must be either Q(
√
p), Q(

√
q) or Q(

√
pq) by part (ii). But by part (i)

√
r is not

in any of these fields! Done.

(v) [F : Q(
√
p,
√
q)] must be 2 (as it isn’t 1) and now use the tower law. The Galois

group – we know firstly that any element of the Galois group will be determined by what it
does to

√
p,
√
q and

√
r, and of course

√
n must be sent to ±

√
n for any n ∈ Q, so there are

at most eight possibilities for Gal(F/Q), corresponding to the 8 = 23 choices we have for the
signs. However we know the size of Gal(F/Q) is eight, so all eight possibilities must occur
and the group must be C2 × C2 × C2.

Let me stress here, for want of a better place, that you cannot just say “clearly
√
p,
√
q

and
√
r are “independent” so we can move them around as we please” – one really has to

come up with some sort of an argument to prove that there really is a field automorphism of
F sending, for example,

√
p to −√p, √q to +

√
q and

√
r to −

√
r. You can build it explicitly

from explicit elements you can write down in the Galois group using degree 4 subfields, or you
can get it via the counting argument I just explained, but you can’t just say “it’s obvious”
because Galois theory is offering you precisely the framework to make the arguments rigorous
and I don’t think it is obvious without this framework.

(vi) Think of the Galois group as a 3-dimensional vector space over the field with two
elements. There are seven 1-dimensional subspaces (each cyclic of order 2 and generated
by the seven non-trivial elements), and there are also seven 2-dimensional subspaces, by
arguing for example on the dual vector space – or by arguing that any subgroup of order 4
of C2 × C2 × C2 is the kernel of a group homomorphism to C2 and such a homomorphism is
determined by where the three generators go; there are eight choices, one of which gives the
trivial homomorphism and the other seven of which give order 4 subgroups.

Hence other than F and Q there are 14 fields; seven have degree 2 and seven have degree 4.
The degree 2 ones are Q(

√
paqbrc) as a, b, c each run through 0 and 1, but not all zero. The

degree 4 ones are Q(
√
paqbrc,

√
pdqerf ) as (a, b, c), (d, e, f) run through bases of the seven

2-dimensional subspaces of the Galois group considered as a vector space of dimension 3 over
the field with 2 elements.

(vii) We know all seven non-trivial elements of the Galois group, and none of them fix√
p +
√
q +
√
r (because if you think of it as a real number, they all send it to something

strictly smaller), so the subgroup corresponding to Q(
√
p +
√
q +
√
r) is trivial and we’re

home.

(viii) Induction and the argument in (v) gives the degree; considering possibilities of signs
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gives that the Galois group is what you think it is, acting how you think it acts, and the last
part again follows by observing that Q(

√
p1 +

√
p2 + · · · + √pn) corresponds to the trivial

subgroup.

Q 6.

Q ⊆ Q
(
81/5

)
⊆ Q

(
81/5,

√
81/5 + 6

)
⊆ Q

(
81/5,

√
81/5 + 6, 51/3

)
⊆ Q

(
81/5,

√
81/5 + 6, 51/3,

11

√
51/3 +

√
81/5 + 6

)
⊆ Q

(
81/5,

√
81/5 + 6, 51/3,

11

√
51/3 +

√
81/5 + 6, 91/7

)
Q 7. This question is not for you to literally do it but to show you what is possible. In
fact the statements are very tedious to prove and not super-useful, which is why they are
typically omitted from lecture courses.3

(a) To sow that the action is transitive is to show that given two K-embeddings x, y : F →
L, there exists a K-embedding g : L→ L — that is to say, an element g of the Galois group
— such that y = gx. This is Question 8, part (a) below. The fact just proven generalizes the

statement: Let K be a field, f(x) ∈ K[x] an irreducible polynomial, and K ⊂ L the splitting
field of f(x). Then G = EmbK(L,L) acts transitively on the roots of f(x). To derive
this from the abstract statement about fields, just note that roots of f(x) are in one-to-one
correspondence with K-embeddings

x : F → L

where F = K[x]/f(x).

The last statement is a tautology: we have an injection i : F → L by means of which we
consider F as a subset of L, i.e. the elements of F are elements of L. For g ∈ G to say that
gi = i is exactly to say that g|F is the identity on F , in other words g ∈ F †.

(b) Suppose thatK ⊂ F is normal. Let g ∈ G, h ∈ H and consider g−1hg. Since g : L→ L
is a K-embedding, it follows that g|F : F → L is also a K-embedding, and then, because
K ⊂ F is normal, we have g(F ) ⊂ F (this is exactly our definition of normal extension of
fields). So for all a ∈ F , g(a) ∈ F and hence h(g(a)) = g(a) and hence g−1hg (a) = a, that
is g−1hg ∈ F † = H or, in other words, H is a normal subgroup of G.

Suppose now that H ≤ G is a normal subgroup. For clarity let me name x : F → L the
given embedding. For all g ∈ G, we want to show that gx(F ) ⊂ x(F ).

In general, if a group G acts on a set X, then for all g ∈ G and x ∈ X, Ggx = gGxg
−1.

What we want now follows from part (a):

x† = H = Gx = gGxg
−1 = Ggx = (gx)†

3I had to revise this question significantly, see v2 of the Worksheet.
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therefore F and gF are the same field, because they have the same dagger H (Galois corre-
spondence).

Finally, ifK ⊂ F is normal, restriction gives a group homomorphism ρ : G→ EmbK(F, F ).
The kernel is clearly H; and ρ is surjective by part (a).

(c) This is a small step from (b). For any K ⊂ F ⊂ L for clarity denote by x : F → L
the given inclusion. Claim: For all g ∈ G, g(F ) ⊂ F if and only if g ∈ NG(H).

Indeed, suppose that g(F ) ⊂ F . Then in fact g(F ) = F (an injective linear map between
finite dimensional vector spaces of the same dimension is an isomorphism) and hence (gx)† =
x†, which implies as above

gHg−1 = gGxg
−1 = Ggx = (gx)† = x† = Gx = H

and hence g ∈ NG(H). Conversely and similarly, if gHg−1 = H, then (gx)† = x†, hence
gx(F ) and x(F ) are the same subfields of L, that is g(F ) = F . This shows the claim.

From the claim it follows that restriction is a group homomorphism ρ : NG(H)→ EmbK(F, F );
the kernel is obviously H and the image is everything: if u ∈ EmbK(F, F ) then by part (a)
there is g ∈ G such that gx = xu, in other words g|F = u: by what we said earlier g ∈ NG(H)
and by what we just said ρ(g) = u.

(d) This part is a minor variation on part (c). Here we start from two K-embeddings
x1 : F1 → L, x2 : F2 → L and set H1 = x†1, H2 = x†2. Claim: For all g ∈ G, gx1(F1) ⊂ x2(F2)
if and only if g ∈ N(H1, H2). Indeed, by the Galois correspondence, gx1(F ) ⊂ x2(F ) if and
only if (gx1)

† ⊃ x†2 if and only if gH1g
−1 ⊃ H2.

From the claim we construct a restriction map

ρ : N(H1, H2)→ EmbK(x1, x2)

which is surjective by part (a). Suppose that g, g′ ∈ N(H1, H2). This just means that
gx1 = g′x1 or in other words g−1g′ ∈ H1.

(e) This is really pretty easy. I show the last bit: suppose that g1, g2 ∈ N(H1, H2) and
that Tg1 = Tg2 . This means that for all h ∈ H2, g

−1
1 hg1 = g−12 hg2 or, equivalently

g2g
−1
1 h = hg2g

−1
1 , that is z = g2g

−1
1 ∈ C(H2)

(f) This is not hard but it is boring. The composition we are talking about is inherited
from the composition of part (e). You need to check that the composition of part (e) is
compatible with various equivalence relations.

(g) This is all an elaborate way to rephrase part (d).

Q 8. (a) By assumption K ⊂ L (there is only one such inclusion so I don’t need to call
it anything) is normal, hence it is the splitting field of a polynomial f(x) ∈ K[x]; so now
xi : F → L is also a splitting field of f(x), and the first half of part (a) (existence of y) follows
from uniqueness of splitting fields over F .

(The fact that y is a field automorphism follows from a familiar argument: it is injective
because every field homomorphism is, and it is surjective by the rank-nullity theorem, because
it is an injective K-linear endomorphism of a finite dimensional K-vector space.)
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(b) Define a set-theoretic function

y? : Embx1(E,L)→ Embx2(E,L)

as follows:
y?(x̃) = y ◦ x̃

Indeed, suppose that a ∈ F , then

y?(x̃)(a) = y
(
x̃(a)

)
= y
(
x1(a)

)
= x2(a)

therefore, as claimed, y?(x̃) ∈ Embx2(E,L).
Finally y? is a bijective correspondence because it has an inverse given by (y−1)?.

Q 9. (a) First note that if α = 21/3 then L is the splitting field of x3 − 2 over Q; indeed the
splitting field is by definition Q(α, ωα, ω2α) (as these are the roots), and this field must be
Q(α, ω) because each of the generators of one field can be easily checked to be in the other.

We immediately deduce that K ⊂ L and F ⊂ L are normal because (both are the splitting
field of X3− 2, seen as a polynomial in either K[X] or F [X]. (We can also deduce normality
of F ⊂ L from normality of K ⊂ L). However K ⊂ F is not normal, because x3 − 2 is
irreducible over K and has one, but not all, roots in F .

(b) Let’s first compute some degrees. We know the min poly of
√

2 over Q has degree 2,
so [F : K] = 2. Also the min poly of 21/4 over Q must be x4 − 2 (because this poly is irred
by Eisenstein), and hence [L : K] = 4. By the tower law we deduce [L : F ] = 2 (and hence
that x2 −

√
2 must be the min poly of 21/4 over F , but we don’t need this). We could use

Question 3 to deduce that K ⊂ F and F ⊂ L are normal, but we could also see it directly:
F is the splitting field of x2 − 2 over K and L is the splitting field of x2 −

√
2 over F , so

they’re both normal. However x4− 2 is irreducible over K and has one root in L (in fact two
roots in L) but not all its roots (as two are not real, whereas L ⊆ R so K ⊂ L is not normal.

(c) If H is normal in G then g−1Hg = H for all g ∈ H, so trivially g−1Hg = H for all
g ∈ K, so H is normal in K.

Examples: H = {1} ⊆ K = 〈(1 2〉 ⊆ S3 for the first, and H = 〈σ〉 ⊆ K = 〈σ, ρ2〉 ⊆ G =
D8 for the second, with D8 = 〈ρ, σ〉 the dihedral group generated by a rotation ρ of order 4
and a reflection σ of order 2.
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