M3P11 (and M4P11, M5P11) Galois Theory, Worksheet 4

Alessio Corti

9th March 2020

Q 1. Say $E \subseteq F$ is an extension of fields with $[F: E]$ finite, and M, N are both subfields of F containing E. Assume that M / E and N / E are both normal.
(i) Prove that $(M \cap N) / E$ is normal.
(ii) Prove that $M N$ (this notation means "the smallest subfield of F containing both M and N ") is normal over E as well.

Q $2(\dagger)$. (a) Let $K \subset L$ be a finite field extension. A finite extension $L \subset \Omega$ is a normal closure of $K \subset L$ if

1. $K \subset \Omega$ is normal, and
2. Ω is generated (as a ring, or field) by $\cup_{\sigma} \sigma(L)$, the union over all K-embeddings $\sigma: L \rightarrow$ Ω.

Prove that a normal closure always exists, and that any two normal closures are isomorphic over L.
(b) Let $K \subset L \subset \Omega$ be finite field extensions. Assume:

1. Ω is generated (as a ring, or field) by $\cup_{\sigma} \sigma(L)$, the union over all K-embeddings $\sigma: L \rightarrow$ Ω.
2. The set $\operatorname{Emb}_{K}(L, \Omega)$ has $[L: K]_{s}$ embeddings.

Then $K \subset \Omega$ is normal, and hence it is a normal closure of $K \subset L$.
Q 3. Here I ask you again to go through the example of an inseparable extension given in class.

Let k be any field of characteristic p (for example $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$), and let $L=k(T)$, the field of fractions of the polynomial ring $k[T]$. This means that a typical element of L is of the form $f(T) / g(T)$ with f and g polynomials, and $g \neq 0$. You can convince yourself that this is a field by checking that the sum, product etc of such things is of the same form.

Set $K=k\left(T^{p}\right)$, the subfield of L consisting of ratios $f\left(T^{p}\right) / g\left(T^{p}\right)$.
(a) Convince yourself that K really is a subfield of L;
(b) Check that $L=K(T)$, the smallest subfield of L containing K and T;
(c) Check that T is algebraic over K and hence $[L: K]$ is finite;
(d) Check that $q(x)=x^{p}-T^{p}$ is an irreducible element of $\left.K[x]\right]^{1}$
(e) Deduce that $q(x)$ is the min poly of T over K, and is also an inseparable polynomial in $K[x]$;
(f) Deduce that L / K is not a separable extension.

Q 4. Say $E \subseteq F$, and L and M are intermediate fields (i.e. $E \subseteq L, M \subseteq F$). Let $N:=L M$ denote the smallest subfield of F containing L and M.
(i) If $L=E\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ then prove $N=M\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
(ii) Now assume L / E and M / E are finite and normal. Prove N / E is finite and normal. (hint: splitting field). Next assume L / E and M / E are finite, normal and separable. Prove that N / E is finite, normal and separable.
(iii) Prove that restriction of functions gives a natural injective group homomorphism from $\operatorname{Gal}(N / E)$ to $\operatorname{Gal}(L / E) \times \operatorname{Gal}(M / E)$. Is it always surjective?

Q 5. (a) Prove that the polynomials

$$
f(x)=x^{3}+x+1, \quad g(x)=x^{3}+x^{2}+1 \quad \in \mathbb{F}_{2}[x]
$$

are irreducible. Consider the fields $K=\mathbb{F}_{2}(\alpha), L=\mathbb{F}_{2}(\beta)$ where α, β are roots of f, g. If $\sigma: K \rightarrow L$ is a field isomorphism, what are the possible values of $\sigma(\alpha) \in L$ written in the basis $1, \beta, \beta^{2}$ of L as a \mathbb{F}_{2}-vector space? Explain why K and L are isomorphic. How many field isomorphisms $\sigma: K \rightarrow L$ are there?
(b) Let L be the same as in Part (a). Consider the polynomial

$$
h(x)=x^{4}+x+1 \in \mathbb{F}_{2}[x] .
$$

Prove that h is irreducible in $\mathbb{F}_{2}[x]$, or else exhibit a factorisation. Let $L \subset E$ be the splitting field of h - seen as a polynomial in $L[x]$. Is the extension $\mathbb{F}_{2} \subset E$ normal? Is it separable? What is the degree $\left[E: \mathbb{F}_{2}\right]$? Prove that $h \in L[x]$ is irreducible, or else exhibit a factorisation.

Q 6. Show that if G is a transitive subgroup of \mathfrak{S}_{n} containing a $(n-1)$-cycle and a transposition, then $G=\mathfrak{S}_{n}$.

Q 7. Consider the polynomial:

$$
f(x)=x^{6}-12 x^{4}+15 x^{3}-6 x^{2}+15 x+12
$$

(a) By considering how $f(x)$ factorises in $\mathbb{F}_{p}[x]$ for small primes p, either prove that $f(x) \in \mathbb{Q}[x]$ is irreducible, or exhibit a factorisation.
(b) Let $\mathbb{Q} \subset K$ be the splitting field of the polynomial in (a). Determine the Galois group of the extension $\mathbb{Q} \subset K$.

[^0]Q 8. Consider the polynomial

$$
f(x)=x^{4}+x^{2}+x+1 \in \mathbb{Q}[x]
$$

(a) By considering how $f(x)$ factorises in $\mathbb{F}_{p}[x]$ for small primes p, either prove that $f(x) \in \mathbb{Q}[x]$ is irreducible, or exhibit a factorisation.
(b) Let $\mathbb{Q} \subset K$ be the splitting field of the polynomial in (a). Determine the Galois group of the extension $\mathbb{Q} \subset K$.

Q 9. Consider the polynomial

$$
f(x)=x^{4}+3 x+1 \in \mathbb{Q}[x]
$$

(a) Show that $f(x)$ is irreducible in $\mathbb{F}_{2}[x]$ and compute its prime factorisation in $\mathbb{F}_{5}[x]$.
(b) Show that: if G is a transitive subgroup of \mathfrak{S}_{4} that contains a 4 -cycle and a 3 -cycle, then $G=\mathfrak{S}_{4}$.
(c) Determine the structure of the Galois group of the splitting field of f over \mathbb{Q}.

Q 10. (a) Show that for all prime p and all integer $n>0$ there exists an irreducible monic polynomial of degree n in $\mathbb{F}_{p}[x]$.
(b) Let $g(x) \in \mathbb{F}_{2}[x]$ be an irreducible monic polynomial of degree $n ; h(x) \in \mathbb{F}_{3}[x]$ an irreducible monic polynomial of degree $(n-1) ; p>n-2$ a prime and $k(x) \in \mathbb{F}_{p}[x]$ an irreducible monic quadratic polynomial. Show that there is a monic polynomial $f(x) \in \mathbb{Z}[x]$ such that $f(x) \equiv g(x) \bmod 2, f(x) \equiv x h(x) \bmod 3$, and $f(x) \equiv x(x+1) \cdots(x+n-3) k(x)$ $\bmod p$.
[Hint. Chinese remainder theorem.]
(c) If f is the polynomial in (b), show that the Galois group of the splitting field over \mathbb{Q} of f is \mathfrak{S}_{n}.

Q 11. In this question $\zeta=e^{\frac{2 \pi i}{6}}$.
(a) Factorise the polynomial $x^{6}-1 \in \mathbb{Q}[x]$. Hence or otherwise determine the degree $[\mathbb{Q}(\zeta): \mathbb{Q}]$.
(b) Show that the polynomial $f(x)=x^{6}+3 \in \mathbb{Q}[x]$ is irreducible. Let $\mathbb{Q} \subset K$ be the splitting field of $f(x)$. What is the degree $[K: \mathbb{Q}]$?. Determine the Galois group G of the extension $\mathbb{Q} \subset K$ and describe, perhaps by drawing some picture(s), the action of G on the set of roots of $f(x)$.
[Hint. Consider first the field $\mathbb{Q}(\alpha)$ where $f(\alpha)=0$ and study the intersection $\mathbb{Q}(\alpha) \cap$ $\mathbb{Q}(\zeta)$.
(c) Let $\mathbb{Q} \subset L$ be the splitting field of the polynomial $g(x)=x^{6}-3 \in \mathbb{Q}[x]$. Compute the degree $[L: \mathbb{Q}]$, determine the Galois group G of the extension $\mathbb{Q} \subset L$ and describe, perhaps by drawing some picture(s), the action of G on the set of roots of $g(x)$.

Q 12. For all integers $3 \leq n \leq 16$, draw pictures illustrating the lattice of subgroups of the Galois group of the cyclotomic extension $\mathbb{Q} \subset \mathbb{Q}\left(\mu_{n}\right)$. Draw the corresponding picture of subfields $\mathbb{Q} \subset F \subset \mathbb{Q}\left(\mu_{n}\right)$. For each of these subfields, find "natural" generators.

If you feel brave, then do the case $n=17$. (The Galois group $(\mathbb{Z} / 17 \mathbb{Z})^{\times}=C_{16}$ is not in and of itself very complicated. The field $\mathbb{Q}\left(\mu_{17}\right)$ is a tower of quadratic extensions but it takes some elbow grease to determine at each stage what you are taking the square root of; in particular this leads to a formula for $\cos \frac{2 \pi}{17}$ involving just iterated square roots of rational numbers. Gauss did this calculation in his teens and it led him to a construction of the regular 17-gon with ruler and compass. You don't yourself need to get to the bitter end of the calculation: do the first couple of steps and then look up the last steps on google.)

[^0]: ${ }^{1}$ Hint: suppose it was reducible, and factor it in $K[x]$. The same factorization would work in $L[x]$. But $L[x]$ is a unique factorization domain. Spot that $p(x)=(x-T)^{p}$ in $L[x]$. By looking at constant terms, convince yourself that this gives a contradiction.

