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Q 1. Say E ⊆ F is an extension of fields with [F : E] finite, and M,N are both subfields of
F containing E. Assume that M/E and N/E are both normal.

(i) Prove that (M ∩N)/E is normal.
(ii) Prove that MN (this notation means “the smallest subfield of F containing both M

and N”) is normal over E as well.

Q 2 (†). (a) Let K ⊂ L be a finite field extension. A finite extension L ⊂ Ω is a normal
closure of K ⊂ L if

1. K ⊂ Ω is normal, and

2. Ω is generated (as a ring, or field) by ∪σσ(L), the union over all K-embeddings σ : L→
Ω.

Prove that a normal closure always exists, and that any two normal closures are isomorphic
over L.

(b) Let K ⊂ L ⊂ Ω be finite field extensions. Assume:

1. Ω is generated (as a ring, or field) by ∪σσ(L), the union over all K-embeddings σ : L→
Ω.

2. The set EmbK(L,Ω) has [L : K]s embeddings.

Then K ⊂ Ω is normal, and hence it is a normal closure of K ⊂ L.

Q 3. Here I ask you again to go through the example of an inseparable extension given in
class.

Let k be any field of characteristic p (for example Fp = Z/pZ), and let L = k(T ), the
field of fractions of the polynomial ring k[T ]. This means that a typical element of L is of
the form f(T )/g(T ) with f and g polynomials, and g 6= 0. You can convince yourself that
this is a field by checking that the sum, product etc of such things is of the same form.

Set K = k(T p), the subfield of L consisting of ratios f(T p)/g(T p).

(a) Convince yourself that K really is a subfield of L;

(b) Check that L = K(T ), the smallest subfield of L containing K and T ;
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(c) Check that T is algebraic over K and hence [L : K] is finite;

(d) Check that q(x) = xp − T p is an irreducible element of K[x];1

(e) Deduce that q(x) is the min poly of T over K, and is also an inseparable polynomial in
K[x];

(f) Deduce that L/K is not a separable extension.

Q 4. Say E ⊆ F , and L and M are intermediate fields (i.e. E ⊆ L,M ⊆ F ). Let N := LM
denote the smallest subfield of F containing L and M .

(i) If L = E(α1, . . . , αn) then prove N = M(α1, . . . , αn).

(ii) Now assume L/E and M/E are finite and normal. Prove N/E is finite and normal.
(hint: splitting field). Next assume L/E and M/E are finite, normal and separable. Prove
that N/E is finite, normal and separable.

(iii) Prove that restriction of functions gives a natural injective group homomorphism
from Gal(N/E) to Gal(L/E)×Gal(M/E). Is it always surjective?

Q 5. (a) Prove that the polynomials

f(x) = x3 + x+ 1, g(x) = x3 + x2 + 1 ∈ F2[x]

are irreducible. Consider the fields K = F2(α), L = F2(β) where α, β are roots of f , g. If
σ : K → L is a field isomorphism, what are the possible values of σ(α) ∈ L written in the
basis 1, β, β2 of L as a F2-vector space? Explain why K and L are isomorphic. How many
field isomorphisms σ : K → L are there?

(b) Let L be the same as in Part (a). Consider the polynomial

h(x) = x4 + x+ 1 ∈ F2[x] .

Prove that h is irreducible in F2[x], or else exhibit a factorisation. Let L ⊂ E be the splitting
field of h — seen as a polynomial in L[x]. Is the extension F2 ⊂ E normal? Is it separable?
What is the degree [E : F2]? Prove that h ∈ L[x] is irreducible, or else exhibit a factorisation.

Q 6. Show that if G is a transitive subgroup of Sn containing a (n − 1)-cycle and a trans-
position, then G = Sn.

Q 7. Consider the polynomial:

f(x) = x6 − 12x4 + 15x3 − 6x2 + 15x+ 12

(a) By considering how f(x) factorises in Fp[x] for small primes p, either prove that
f(x) ∈ Q[x] is irreducible, or exhibit a factorisation.

(b) Let Q ⊂ K be the splitting field of the polynomial in (a). Determine the Galois group
of the extension Q ⊂ K.

1Hint: suppose it was reducible, and factor it in K[x]. The same factorization would work in L[x]. But
L[x] is a unique factorization domain. Spot that p(x) = (x − T )p in L[x]. By looking at constant terms,
convince yourself that this gives a contradiction.
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Q 8. Consider the polynomial

f(x) = x4 + x2 + x+ 1 ∈ Q[x]

(a) By considering how f(x) factorises in Fp[x] for small primes p, either prove that
f(x) ∈ Q[x] is irreducible, or exhibit a factorisation.

(b) Let Q ⊂ K be the splitting field of the polynomial in (a). Determine the Galois group
of the extension Q ⊂ K.

Q 9. Consider the polynomial

f(x) = x4 + 3x+ 1 ∈ Q[x]

(a) Show that f(x) is irreducible in F2[x] and compute its prime factorisation in F5[x].

(b) Show that: if G is a transitive subgroup of S4 that contains a 4-cycle and a 3-cycle,
then G = S4.

(c) Determine the structure of the Galois group of the splitting field of f over Q.

Q 10. (a) Show that for all prime p and all integer n > 0 there exists an irreducible monic
polynomial of degree n in Fp[x].

(b) Let g(x) ∈ F2[x] be an irreducible monic polynomial of degree n; h(x) ∈ F3[x] an
irreducible monic polynomial of degree (n − 1); p > n − 2 a prime and k(x) ∈ Fp[x] an
irreducible monic quadratic polynomial. Show that there is a monic polynomial f(x) ∈ Z[x]
such that f(x) ≡ g(x) mod 2, f(x) ≡ xh(x) mod 3, and f(x) ≡ x(x+ 1) · · · (x+n− 3)k(x)
mod p.

[Hint. Chinese remainder theorem.]

(c) If f is the polynomial in (b), show that the Galois group of the splitting field over Q
of f is Sn.

Q 11. In this question ζ = e
2π i
6 .

(a) Factorise the polynomial x6 − 1 ∈ Q[x]. Hence or otherwise determine the degree
[Q(ζ) : Q].

(b) Show that the polynomial f(x) = x6 + 3 ∈ Q[x] is irreducible. Let Q ⊂ K be the
splitting field of f(x). What is the degree [K : Q]?. Determine the Galois group G of the
extension Q ⊂ K and describe, perhaps by drawing some picture(s), the action of G on the
set of roots of f(x).

[Hint. Consider first the field Q(α) where f(α) = 0 and study the intersection Q(α) ∩
Q(ζ).]

(c) Let Q ⊂ L be the splitting field of the polynomial g(x) = x6−3 ∈ Q[x]. Compute the
degree [L : Q], determine the Galois group G of the extension Q ⊂ L and describe, perhaps
by drawing some picture(s), the action of G on the set of roots of g(x).

Q 12. For all integers 3 ≤ n ≤ 16, draw pictures illustrating the lattice of subgroups of the
Galois group of the cyclotomic extension Q ⊂ Q(µn). Draw the corresponding picture of
subfields Q ⊂ F ⊂ Q(µn). For each of these subfields, find “natural” generators.
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If you feel brave, then do the case n = 17. (The Galois group (Z/17Z)× = C16 is not
in and of itself very complicated. The field Q(µ17) is a tower of quadratic extensions but it
takes some elbow grease to determine at each stage what you are taking the square root of;
in particular this leads to a formula for cos 2π

17
involving just iterated square roots of rational

numbers. Gauss did this calculation in his teens and it led him to a construction of the
regular 17-gon with ruler and compass. You don’t yourself need to get to the bitter end of
the calculation: do the first couple of steps and then look up the last steps on google.)
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