M3P11 (and M4P11, M5P11) Galois Theory, Solutions to Worksheet 2

Alessio Corti

10th March 2020

Q 1. (i) γ clearly satisfies $\left(\gamma^{3}-1\right)^{2}=3$, so it's a root of the polynomial $\left(x^{3}-1\right)^{2}-3$ which is $x^{6}-2 x^{3}-2$. By the Eisenstein criterion this polynomial is irreducible, so it must be the min poly of γ, and the degree of γ over \mathbb{Q} is 6 .

Note that $\sqrt{3}=\gamma^{3}-1 \in \mathbb{Q}(\gamma)$ so if $F=\mathbb{Q}(\gamma)$ and $K=\mathbb{Q}(\sqrt{3})$ we must have $\mathbb{Q} \subseteq K \subseteq F$ and the tower law gives $2[F: K]=[K: \mathbb{Q}][F: K]=[F: \mathbb{Q}]=6$, and we deduce $[F: K]=3$. Because F contains $\sqrt{3}$ it must contain K and it's not hard to deduce that $F=K(\gamma)$. By the tower law again, the degree of γ over K must then be 3 .

Note that if one could show that $x^{3}-(1+\sqrt{3})$ were irreducible in $K[x]$ then this would be another way to do the question, but I did not explain any techniques for tackling this.
(ii) Even more evil trick question. Turns out $\delta=1+\sqrt{3}$ (cube it out to check) so the degree is 2 over \mathbb{Q} and also over $\mathbb{Q}(\sqrt{2})$, the latter because we saw in some previous question that $\delta \notin \mathbb{Q}(\sqrt{2})$ (it would imply $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$).

Q 2. (a) Well $z^{3}=\omega^{3} \alpha^{3}=1 \times 2=2$ so z is a root of $x^{3}-2=0$, which is irreducible over \mathbb{Q} because it has no root in \mathbb{Q}, so $x^{3}-2$ is the min poly of z, and by what we did in class this means $[\mathbb{Q}(z): \mathbb{Q}]=3$. Although we don't need it, we can note that in fact $\mathbb{Q}(z)$ is isomorphic to, but not equal to, $\mathbb{Q}(\alpha)$, as an abstract field.
(b) We know $\omega^{3}=1$ but $\omega \neq 1$ so ω is a root of $\left(x^{3}-1\right) /(x-1)=x^{2}+x+1$. This polynomial is irreducible as it has no rational (because no real) roots, so $[\mathbb{Q}(\omega): \mathbb{Q}]=2$. Note also while we're here that solving the quadratic gives $\omega=\frac{-1+i \sqrt{3}}{2}$ (plus sign because the imaginary part of ω is positive; the other root is ω^{2}).
(c) We have $\alpha \in \mathbb{R}$. Furthermore $\bar{\omega}$ is another cube root of 1 so it must be ω^{2}. Hence $\bar{z}=\overline{\omega \alpha}=\omega^{2} \alpha=\omega z$. In particular if $\bar{z} \in \mathbb{Q}(z)$ then $\omega=\bar{z} / z \in \mathbb{Q}(z)$. This means $\mathbb{Q}(\omega) \subseteq \mathbb{Q}(z)$, and by the first two parts and the tower law we deduce $[\mathbb{Q}(z): \mathbb{Q}(\omega)]=\frac{3}{2}$, which is nonsense because the dimension of a (finite-dimensional) vector space is a whole number.
(d) If $x \in \mathbb{Q}(z)$ then $\bar{z}=-z+2 x \in \mathbb{Q}(z)$, contradiction. So x is not in. If $i \in \mathbb{Q}(z)$ then $\mathbb{Q}(i) \subseteq \mathbb{Q}(z)$ and this contradicts the tower law like in part(c). Finally because the imaginary part of ω is $\sqrt{3} / 2$ we see $y=\alpha \sqrt{3} / 2$, so if $y \in \mathbb{Q}(\omega)$ then $y^{3}=3 \alpha^{3} / 8 \sqrt{3}=3 / 4 \sqrt{3} \in \mathbb{Q}(z)$, implying $\sqrt{3} \in \mathbb{Q}(z)$ which again contradicts the tower law.

Q 3. (a) We know 0 is the additive identity in R so $0+0=0$. Hence $0 x=(0+0) x=0 x+0 x$ and subtracting $0 x$ (which we can do, because $(R,+)$ is a group so $0 x$ has an additive inverse) we deduce $0=0 x$.
(b) If $a \neq 0$ and $b \neq 0$ then there exist multiplicative inverses a^{-1} and b^{-1}, and now $a b b^{-1} a^{-1}=1 \times 1=1$. However if $a b=0$ then we deduce $0\left(b^{-1} a^{-1}\right)=1$ which contradicts part (a) (as $0 \neq 1$ in a field).
(c) Look at top degree terms.
(d) $f h=g h$ implies $(f-g) h=0$, and if $h \neq 0$ we must have $f-g=0$ by (c).

Q 4. (i) Spot root $x=2$; so $x^{3}-8=(x-2)\left(x^{2}+2 x+4\right)$ and roots of the quadratic are non-real and hence non-rational, so the quadratic must be irreducible (as any factors would be linear).
(ii) Irreducible by Eisenstein ($p=2$ or $p=3$).
(iii) The polynomial $x^{2}-2 x+2$ is a factor; dividing out we see $x^{4}+4=\left(x^{2}-2 x+2\right)\left(x^{2}+\right.$ $2 x+2$). Easy check now that both quadratics have non-real and hence non-rational roots, so must be irreducible.
(iv) Either this is irreducible over \mathbb{Q}, or there is a root in \mathbb{Q} (because any factorization must involve a linear term). So let's substitute in $x=p / q$ in lowest terms (i.e. $\operatorname{gcd}(p, q)=1$) and see what happens. Clearing denominators we get

$$
2 p^{3}+5 p^{2} q+5 p q^{2}+3 q^{3}=0
$$

Now p divides the first three terms of the left hand side, so must divide the fourth which is $3 q^{3}$. But p and q are coprime! So p must divide 3. A similar argument shows that q must divide 2. So $p= \pm 1$ or ± 3 and $q= \pm 1$ or ± 2. Clearly no positive rational is a root (as all the coefficients are positive) so we are left with the possibilities $x=-1,-1 / 2,-3,-3 / 2$ and we just try all of them. Miraculously $x=-3 / 2$ does work! Pulling off the corresponding linear factor gives

$$
2 x^{3}+5 x^{2}+5 x+3=(2 x+3)\left(x^{2}+x+1\right)
$$

and the quadratic term has no real roots and hence no rational ones, so this is the factorization into irreducibles.
(v) This one is irreducible by Eisenstein with $p=3$.
(vi) There's an obvious factor of $x-1$ and the other factor $x^{72}+x^{71}+\cdots+x+1$ is irreducible. To see this first substitute $y=x-1$, then apply Eisenstein with $p=73$ prime.
(vii) This polynomial is obtainable from the polynomial in part (vi): start with the part (vi) polynomial, change x to $-x$ and then change the sign of the polynomial. These sorts of things do not affect things like irreducibility and factorization, so the factorization will be $(x+1)\left(x^{72}-x^{71}+\ldots-x+1\right)$ and the degree 72 polynomial will be irreducible.
(viii) Spot roots $x=1$ and $x=-1$. Over the complexes we have more roots too, like $\pm i$ and so on - how do these control factorization over the rationals? Well $(x-i)$ and $(x+i)$ are factors over the complexes, so their product $x^{2}+1$ is a factor over the complexes and hence also over the rationals. Similarly the two complex cube roots of 1 are complex conjugates and are the two roots of $x^{2}+x+1$, and the two 6 th roots of 1 that we haven't mentioned
yet ($e^{\frac{2 \pi i}{6}}$ and its complex conjugate) are roots of $x^{2}-x+1$. So we've just spotted factors whose degrees add up to 8 . Let's see what we have so far then: the factors we have spotted are

$$
\begin{aligned}
& (x+1)(x-1)\left(x^{2}+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) \\
= & \left(x^{2}-1\right)\left(x^{2}+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) \\
= & \left(x^{4}-1\right)\left(x^{4}+x^{2}+1\right)
\end{aligned}
$$

and so what is left is

$$
\begin{aligned}
& \left(x^{12}-1\right) /\left(x^{4}-1\right)\left(x^{4}+x^{2}+1\right) \\
= & \left(x^{8}+x^{4}+1\right) /\left(x^{4}+x^{2}+1\right) \\
= & x^{4}-x^{2}+1
\end{aligned}
$$

The hardest part of this question is figuring out whether that last polynomial $x^{4}-x^{2}+1$ factors.

Q 5. The min poly of α must be $x^{10}-2$ because this is irreducible over \mathbb{Q} (by Eisenstein) and has α as a root. In particular there is no non-zero polynomial of degree at most 9 with rational coefficients and α as a root, so $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{9}\right\}$ are linearly independent elements in a vector space of dimension 10 , and hence are a basis.

Q 6. (i) To check that a subset of a field is a subfield all we need to do is to check 0 and 1 are in, and that the subset is closed under addition, subtraction, multiplication, and division-by-things-that-aren't-zero. These things follow from the tower law: if α, β are algebraic then $[\mathbb{Q}(\alpha): \mathbb{Q}]<\infty$ and $[\mathbb{Q}(\beta): \mathbb{Q}]<\infty$, but then

$$
[\mathbb{Q}(\alpha, \beta): \mathbb{Q}]=[\mathbb{Q}(\alpha)(\beta): \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}] \leq[\mathbb{Q}(\beta): \mathbb{Q}][\mathbb{Q}(\alpha): \mathbb{Q}]<\infty
$$

But then for all $\lambda \in \mathbb{Q}(\alpha, \beta)[\mathbb{Q}(\lambda): \mathbb{Q}]<\infty$, i.e., λ is algebraic.
(ii) Say for a contradiction that $[A: \mathbb{Q}]=n<\infty$. Let $p(x)=x^{n+1}-2$ and let $\alpha \in \mathbb{C}$ be a root. Then α is algebraic and its min poly must be $p(x)$ as $p(x)$ is monic and irreducible. So $n=[A: \mathbb{Q}]=[A: \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}]=(n+1)[A: \mathbb{Q}(\alpha)] \geq n+1>n$, a contradiction.
(iii) For each n there are only countably many elements of $\mathbb{Q}[x]$ with degree at most n, and a countable union of countable sets is countable, so there are only countably many polynomials. Each algebraic number is a root of a non-zero polynomial in $\mathbb{Q}[x]$ and such a polynomial has only finitely many roots, and a countable union of finite sets is countable, so A is countable.
(iv) If $[\mathbb{C}: A]$ were finite then \mathbb{C} would be isomorphic to A^{n} for some $n \in \mathbb{Z}_{\geq 1}$ and hence \mathbb{C} would be countable, a contradiction.

Q 7. This is tedious and I am not going to do it; but I will make a few comments.
A polynomial of degree ≤ 3 in $\mathbb{F}_{p}[x]$ is irreducible if and only if it has no roots in \mathbb{F}_{p}, and this can be checked by evaluating at all elements $0, \ldots, p-1 \in \mathbb{F}_{p}$.

For example with $p=2$ the only irreducible quadratic polynomial is:

$$
x^{2}+x+1
$$

and the irreducible cubic polynomials are:

$$
x^{3}+x+1, \quad x^{3}+x^{2}+1
$$

For $p=3$ there are 3 irreducible monic quadratic polynomials; they are:

$$
x^{2}+1, \quad x^{2}+x-1, \quad x^{2}-x-1
$$

On the other hand, if you understand some of what we (by now) said about finite fields, there are $(27-3) / 3=8$ irreducible monic cubic polynomial, and it should not be too timeconsuming to write them all down.

For $p=5$, again if you understand the last part of the question in Test 2, there are $(25-5) / 2=10$ irreducible monic quadratic (not too bad to list them all) and (125-5)/3=40 irreducible monic cubic polynomials in $\mathbb{F}_{5}[x]$ (OK so to do this by hand would be a bit ridiculous. You can write your own computer program if you wish, or find a table on the 'net).

Q 8. (a) The statement is obvious if b is a square in K so let us assume that it is not. Suppose that there are $x, y \in K$ such that

$$
a=(x+y \sqrt{b})^{2}=\left(x^{2}+b y^{2}\right)+2 x y \sqrt{b}
$$

Since $1, \sqrt{b}$ are linearly independent over K, we must have that either
(i) $y=0$, in which case $a=x^{2}$ is a square in K, or
(ii) $x=0$, in which case $a=y^{2} b$ and then $a b=(y b)^{2}$ is a square in K.
(b) Suppose say that $a+\beta$ is a square in L. This means that there are $x, y \in K$ such that

$$
a+\beta=(x+y \beta)^{2}=\left(x^{2}+y^{2} b\right)+2 x y \beta
$$

but then $a-\beta=(x-y \beta)^{2}$ is also a square in L, and

$$
c=a^{2}-b=(a+\beta)(a-\beta)=[(x+y \beta)(x-y \beta)]^{2}=\left[x^{2}-y^{2} b\right]^{2}
$$

is a square in L.
(c) The roots are $\pm \sqrt{a \pm \sqrt{b}}$; so choose $\beta, \alpha, \alpha^{\prime} \in L$ such that $\beta^{2}=b, \alpha^{2}=a+\beta$, $\alpha^{\prime 2}=a-\beta$. We work with the diagram

First, $[K(\beta): K]=2$ since we are assuming that b is not a square in K.
Write $K_{1}=K(\beta)$. I claim that $\left[K(\alpha): K_{1}\right]=2$. Indeed, by Part (b), if $a+\beta$ were a square in K_{1}, then also $a-\beta$ would be a square in K_{1} and then $c=(a+\beta)(a-\beta)=a^{2}-b$ is a square in K, contradicting one of our assumptions.

Similarly, also $\left[K\left(\alpha^{\prime}\right): K_{1}\right]=2$.
The conclusion of Part (c) follows from the tower law and the new claim: $K_{1}(\alpha) \neq$ $K_{1}\left(\alpha^{\prime}\right)$. Indeed suppose for a contradiction that $\alpha^{\prime} \in K_{1}(\alpha)$: this is saying that $a-\beta$ is a square in $K_{1}(\sqrt{a+\beta})$. From Part (a) with $u=a-\beta$ and $v=a+\beta$ in K_{1}, we conclude that either:
(i) $a-\beta$ is a square in K_{1}, contradicting the claim proved that $\left[K_{1}\left(\alpha^{\prime}\right): K_{1}\right]=2$, or:
(ii) $c=(a-\beta)(a+\beta)=a^{2}-b$ is a square in K_{1}.

Since the first alternative led to a contradiction, it must be that c is a square in K_{1}. We apply Part (a) again with $u=c, v=b$ in K. We have c a square in $K(\sqrt{b})$, that is, either c or $c b$ is a square in K, contradicting our assumptions. This final contradiction shows that $K_{1}(\alpha) \neq K_{1}\left(\alpha^{\prime}\right)$ and finishes Part (c).

Q 9. It is easy to see that (ii) implies (i) and here I focus on proving that (i) implies (ii).
The key thing to understand is this: Claim If $\operatorname{char}(K) \neq 2$ then every extension $K \subset L$ of degree $[L: K]=2$ is of the form $L=K(\alpha)$ for some $\alpha \in L$ such that $\alpha^{2} \in K$. I am going to leave out the proof of the Claim (hint: quadratic formula) and I will use it to answer the question.

So assume (i), then by the tower law $[L: E]=2$ and $[E: K]=2$ and by the Claim $L=E(\alpha)$ for some $\alpha \in L$ with $\alpha^{2} \in E$. Also $E=K(\beta)$ where $\beta^{2} \in K$. Hence we can write $\alpha^{2}=u+v \beta$ with $u, v \in K$, so

$$
\left(\alpha^{2}-u\right)^{2}=v^{2} \beta^{2} \in K
$$

hence α is a root of the polynomial

$$
f(X)=\left(X^{2}-u\right)^{2}-v^{2} \beta^{2}=X^{4}-2 u X^{2}+\left(u^{2}-v^{2} \beta^{2}\right) \in K[X]
$$

which is of the required form. If $f(X) \in K[X]$ is irreducible then we are done.
So what if $f(X)$ is not irreducible? This is really awkward! In that case by the tower law $[K(\alpha): K]=2$ and the minimal polynomial of α over K is a quadratic polynomial

$$
X^{2}+c X+d \in K[X]
$$

and necessarily $c=0$, otherwise $\alpha=\frac{-\alpha^{2}-d}{c} \in E$, a contradiction. Hence in fact $\alpha^{2} \in K$ and we have extensions:

where $\beta^{2}=b \in K$ and $\alpha^{2}=a \in K$ BUT also, clearly, $\alpha \notin K(\beta)$ and $\beta \notin K(\alpha)$.
Remark there is a third field, $G=K(\alpha \beta)$, distinct from E, F, and also of degree $[G: K]=2$. Note also that $(\alpha \beta)^{2}=a b \in K$. (I leave all this to you to sort out.)

I now want to work with the element $\alpha+\beta \in L$: I claim that it has degree 4 over K, and then $L=K(\alpha+\beta)$ and, since

$$
\begin{equation*}
(\alpha+\beta)^{2}=a+b+2 \alpha \beta \in G \tag{1}
\end{equation*}
$$

the argument above shows that the minimal polynomial of $\alpha+\beta$ has the required form.
Suppose for a contradiction that $\alpha+\beta$ satisfies a quadratic polynomial

$$
X^{2}+A X+B \in K[X]
$$

If $A=0$ then we have that $(\alpha+\beta)^{2}=-B \in K$, and this implies (by Equation 1) that $\alpha \beta \in K$, a contradiction. If $A \neq 0$ then $\alpha+\beta=\frac{-(\alpha+\beta)^{2}-B}{A} \in G$ (Equation 1 again) and the polynomial

$$
g(X)=(X-\alpha)(X-\beta)=X^{2}-(\alpha+\beta) X+\alpha \beta
$$

is in $G[X]$. This polynomial is irreducible, otherwise its roots α, β already belong to G, so $L=G$ and we get a contradiction in too many ways (for instance $[L: K]=[G: K]=2$). But then $g(X)$ equals $X^{2}-a$, the minimal polynomial of α over $K[X]$, and this then leads to a contradiction in too many ways (for instance it implies that $\alpha=-\beta$).

Q 10. This is not difficult at all. Go back to your notes of the discussion of $X^{3}-2$ at the beginning of the course and make the appropriate minor changes.

Q 11. Let's start by adjoining one root of $x^{4}-p$, say, α, the positive real $4^{\text {th }}$ root of p. We get a field $K=\mathbb{Q}(\alpha)$. By Eisenstein, $x^{4}-p$ is irreducible over \mathbb{Q}, so $[K: \mathbb{Q}]=4$. Is K a splitting field? No, because it's a subfield of the reals, and $x^{4}-p$ has some non-real roots (namely $\pm \mathrm{i} \alpha$). However K does contain two roots of $x^{4}-p$, namely $\pm \alpha$, so $x^{4}-p$ must factor as $(x+\alpha)(x-\alpha) q(x)$, with $q(x) \in K[x]$ of degree 2 and irreducible (as no roots in K). If $\beta=\mathrm{i} \alpha$ is a root of $q(x)$ and $F=K(\beta)$ then $[F: K]=2$ so $[F: \mathbb{Q}]=8$ by the tower law. We can alternatively write $F=K(\mathbf{i})$ as $\beta=\mathrm{i} \alpha$, so $F=\mathbb{Q}(\mathbf{i}, \alpha)$.
F is a splitting field over \mathbb{Q} so it's finite, normal and separable (separability isn't an issue as we're in characteristic 0). So we know $\operatorname{Gal}(F / \mathbb{Q})$ has size 8 . We also know that if $\tau: F \rightarrow F$ is an isomorphism then $\tau(\alpha)$ had better be a $4^{\text {th }}$ root of $\tau(p)=p$, so it's $\pm \alpha$ or $\pm \mathrm{i} \alpha$; there are at most 4 choices for $\tau(\alpha)$. Similarly $\tau(\mathrm{i})= \pm \mathrm{i}$ so there are at most 2 choices for $\tau(\mathrm{i})$. This gives at most 8 choices for τ; however we know that $\operatorname{Gal}(F / \mathbb{Q})$ has size 8 , so all eight choices must work. It is not hard now to convince yourself that $\operatorname{Gal}(F / \mathbb{Q})$ is isomorphic to D_{8} (think of a square with corners labelled $\alpha, \mathrm{i} \alpha,-\alpha,-\mathrm{i} \alpha$).

