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Q 1. (i) γ clearly satisfies (γ3 − 1)2 = 3, so it’s a root of the polynomial (x3 − 1)2 − 3 which
is x6 − 2x3 − 2. By the Eisenstein criterion this polynomial is irreducible, so it must be the
min poly of γ, and the degree of γ over Q is 6.

Note that
√

3 = γ3−1 ∈ Q(γ) so if F = Q(γ) and K = Q(
√

3) we must have Q ⊆ K ⊆ F
and the tower law gives 2[F : K] = [K : Q][F : K] = [F : Q] = 6, and we deduce [F : K] = 3.
Because F contains

√
3 it must contain K and it’s not hard to deduce that F = K(γ). By

the tower law again, the degree of γ over K must then be 3.
Note that if one could show that x3 − (1 +

√
3) were irreducible in K[x] then this would

be another way to do the question, but I did not explain any techniques for tackling this.

(ii) Even more evil trick question. Turns out δ = 1 +
√

3 (cube it out to check) so the
degree is 2 over Q and also over Q(

√
2), the latter because we saw in some previous question

that δ 6∈ Q(
√

2) (it would imply
√

3 ∈ Q(
√

2)).

Q 2. (a) Well z3 = ω3α3 = 1× 2 = 2 so z is a root of x3− 2 = 0, which is irreducible over Q
because it has no root in Q, so x3 − 2 is the min poly of z, and by what we did in class this
means [Q(z) : Q] = 3. Although we don’t need it, we can note that in fact Q(z) is isomorphic
to, but not equal to, Q(α), as an abstract field.

(b) We know ω3 = 1 but ω 6= 1 so ω is a root of (x3 − 1)/(x − 1) = x2 + x + 1. This
polynomial is irreducible as it has no rational (because no real) roots, so [Q(ω) : Q] = 2.

Note also while we’re here that solving the quadratic gives ω = −1+i
√
3

2
(plus sign because

the imaginary part of ω is positive; the other root is ω2).

(c) We have α ∈ R. Furthermore ω is another cube root of 1 so it must be ω2. Hence
z = ωα = ω2α = ωz. In particular if z ∈ Q(z) then ω = z/z ∈ Q(z). This means
Q(ω) ⊆ Q(z), and by the first two parts and the tower law we deduce [Q(z) : Q(ω)] = 3

2
,

which is nonsense because the dimension of a (finite-dimensional) vector space is a whole
number.

(d) If x ∈ Q(z) then z = −z + 2x ∈ Q(z), contradiction. So x is not in. If i ∈ Q(z) then
Q(i) ⊆ Q(z) and this contradicts the tower law like in part(c). Finally because the imaginary
part of ω is

√
3/2 we see y = α

√
3/2, so if y ∈ Q(ω) then y3 = 3α3/8

√
3 = 3/4

√
3 ∈ Q(z),

implying
√

3 ∈ Q(z) which again contradicts the tower law.
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Q 3. (a) We know 0 is the additive identity in R so 0+0 = 0. Hence 0x = (0+0)x = 0x+0x
and subtracting 0x (which we can do, because (R,+) is a group so 0x has an additive inverse)
we deduce 0 = 0x.

(b) If a 6= 0 and b 6= 0 then there exist multiplicative inverses a−1 and b−1, and now
abb−1a−1 = 1 × 1 = 1. However if ab = 0 then we deduce 0(b−1a−1) = 1 which contradicts
part (a) (as 0 6= 1 in a field).

(c) Look at top degree terms.

(d) fh = gh implies (f − g)h = 0, and if h 6= 0 we must have f − g = 0 by (c).

Q 4. (i) Spot root x = 2; so x3 − 8 = (x − 2)(x2 + 2x + 4) and roots of the quadratic are
non-real and hence non-rational, so the quadratic must be irreducible (as any factors would
be linear).

(ii) Irreducible by Eisenstein (p = 2 or p = 3).

(iii) The polynomial x2−2x+2 is a factor; dividing out we see x4 +4 = (x2−2x+2)(x2 +
2x + 2). Easy check now that both quadratics have non-real and hence non-rational roots,
so must be irreducible.

(iv) Either this is irreducible over Q, or there is a root in Q (because any factorization
must involve a linear term). So let’s substitute in x = p/q in lowest terms (i.e. gcd(p, q) = 1)
and see what happens. Clearing denominators we get

2p3 + 5p2q + 5pq2 + 3q3 = 0.

Now p divides the first three terms of the left hand side, so must divide the fourth which is
3q3. But p and q are coprime! So p must divide 3. A similar argument shows that q must
divide 2. So p = ±1 or ±3 and q = ±1 or ±2. Clearly no positive rational is a root (as all
the coefficients are positive) so we are left with the possibilities x = −1,−1/2,−3,−3/2 and
we just try all of them. Miraculously x = −3/2 does work! Pulling off the corresponding
linear factor gives

2x3 + 5x2 + 5x+ 3 = (2x+ 3)(x2 + x+ 1)

and the quadratic term has no real roots and hence no rational ones, so this is the factorization
into irreducibles.

(v) This one is irreducible by Eisenstein with p = 3.

(vi) There’s an obvious factor of x − 1 and the other factor x72 + x71 + · · · + x + 1 is
irreducible. To see this first substitute y = x− 1, then apply Eisenstein with p = 73 prime.

(vii) This polynomial is obtainable from the polynomial in part (vi): start with the part
(vi) polynomial, change x to −x and then change the sign of the polynomial. These sorts
of things do not affect things like irreducibility and factorization, so the factorization will be
(x+ 1)(x72 − x71 + . . .− x+ 1) and the degree 72 polynomial will be irreducible.

(viii) Spot roots x = 1 and x = −1. Over the complexes we have more roots too, like ±i
and so on – how do these control factorization over the rationals? Well (x− i) and (x+ i) are
factors over the complexes, so their product x2 + 1 is a factor over the complexes and hence
also over the rationals. Similarly the two complex cube roots of 1 are complex conjugates
and are the two roots of x2 + x + 1, and the two 6th roots of 1 that we haven’t mentioned
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yet (e
2π i
6 and its complex conjugate) are roots of x2 − x + 1. So we’ve just spotted factors

whose degrees add up to 8. Let’s see what we have so far then: the factors we have spotted
are

(x+ 1)(x− 1)(x2 + 1)(x2 + x+ 1)(x2 − x+ 1)

= (x2 − 1)(x2 + 1)(x2 + x+ 1)(x2 − x+ 1)

= (x4 − 1)(x4 + x2 + 1)

and so what is left is

(x12 − 1)/(x4 − 1)(x4 + x2 + 1)

= (x8 + x4 + 1)/(x4 + x2 + 1)

= x4 − x2 + 1

The hardest part of this question is figuring out whether that last polynomial x4 − x2 + 1
factors.

Q 5. The min poly of α must be x10 − 2 because this is irreducible over Q (by Eisenstein)
and has α as a root. In particular there is no non-zero polynomial of degree at most 9 with
rational coefficients and α as a root, so {1, α, α2, . . . , α9} are linearly independent elements
in a vector space of dimension 10, and hence are a basis.

Q 6. (i) To check that a subset of a field is a subfield all we need to do is to check 0 and 1 are
in, and that the subset is closed under addition, subtraction, multiplication, and division-
by-things-that-aren’t-zero. These things follow from the tower law: if α, β are algebraic then
[Q(α) : Q] <∞ and [Q(β) : Q] <∞, but then

[Q(α, β) : Q] = [Q(α)(β) : Q(α)][Q(α) : Q] ≤ [Q(β) : Q][Q(α) : Q] <∞

But then for all λ ∈ Q(α, β) [Q(λ) : Q] <∞, i.e., λ is algebraic.

(ii) Say for a contradiction that [A : Q] = n <∞. Let p(x) = xn+1 − 2 and let α ∈ C be
a root. Then α is algebraic and its min poly must be p(x) as p(x) is monic and irreducible.
So n = [A : Q] = [A : Q(α)][Q(α) : Q] = (n+ 1)[A : Q(α)] ≥ n+ 1 > n, a contradiction.

(iii) For each n there are only countably many elements of Q[x] with degree at most
n, and a countable union of countable sets is countable, so there are only countably many
polynomials. Each algebraic number is a root of a non-zero polynomial in Q[x] and such a
polynomial has only finitely many roots, and a countable union of finite sets is countable, so
A is countable.

(iv) If [C : A] were finite then C would be isomorphic to An for some n ∈ Z≥1 and hence
C would be countable, a contradiction.

Q 7. This is tedious and I am not going to do it; but I will make a few comments.

A polynomial of degree ≤ 3 in Fp[x] is irreducible if and only if it has no roots in Fp, and
this can be checked by evaluating at all elements 0, . . . , p− 1 ∈ Fp.

For example with p = 2 the only irreducible quadratic polynomial is:

x2 + x+ 1
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and the irreducible cubic polynomials are:

x3 + x+ 1, x3 + x2 + 1

For p = 3 there are 3 irreducible monic quadratic polynomials; they are:

x2 + 1, x2 + x− 1, x2 − x− 1

On the other hand, if you understand some of what we (by now) said about finite fields,
there are (27− 3)/3 = 8 irreducible monic cubic polynomial, and it should not be too time-
consuming to write them all down.

For p = 5, again if you understand the last part of the question in Test 2, there are
(25−5)/2 = 10 irreducible monic quadratic (not too bad to list them all) and (125−5)/3 = 40
irreducible monic cubic polynomials in F5[x] (OK so to do this by hand would be a bit
ridiculous. You can write your own computer program if you wish, or find a table on the
’net).

Q 8. (a) The statement is obvious if b is a square in K so let us assume that it is not.
Suppose that there are x, y ∈ K such that

a = (x+ y
√
b)2 = (x2 + by2) + 2xy

√
b

Since 1,
√
b are linearly independent over K, we must have that either

(i) y = 0, in which case a = x2 is a square in K, or

(ii) x = 0, in which case a = y2b and then ab = (yb)2 is a square in K.

(b) Suppose say that a + β is a square in L. This means that there are x, y ∈ K such
that

a+ β = (x+ yβ)2 = (x2 + y2b) + 2xyβ

but then a− β = (x− yβ)2 is also a square in L, and

c = a2 − b = (a+ β)(a− β) = [(x+ yβ)(x− yβ)]2 = [x2 − y2b]2

is a square in L.

(c) The roots are ±
√
a±
√
b; so choose β, α, α′ ∈ L such that β2 = b, α2 = a + β,

α′ 2 = a− β. We work with the diagram

L

K(α)

::

K(α′)

dd

K(β)

cc ::

K

OO
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First, [K(β) : K] = 2 since we are assuming that b is not a square in K.
Write K1 = K(β). I claim that [K(α) : K1] = 2. Indeed, by Part (b), if a + β were a

square in K1, then also a− β would be a square in K1 and then c = (a+ β)(a− β) = a2 − b
is a square in K, contradicting one of our assumptions.

Similarly, also [K(α′) : K1] = 2.
The conclusion of Part (c) follows from the tower law and the new claim: K1(α) 6=

K1(α
′). Indeed suppose for a contradiction that α′ ∈ K1(α): this is saying that a − β is a

square in K1(
√
a+ β). From Part (a) with u = a− β and v = a+ β in K1, we conclude that

either:

(i) a− β is a square in K1, contradicting the claim proved that [K1(α
′) : K1] = 2, or:

(ii) c = (a− β)(a+ β) = a2 − b is a square in K1.

Since the first alternative led to a contradiction, it must be that c is a square in K1. We
apply Part (a) again with u = c, v = b in K. We have c a square in K(

√
b), that is, either

c or cb is a square in K, contradicting our assumptions. This final contradiction shows that
K1(α) 6= K1(α

′) and finishes Part (c).

Q 9. It is easy to see that (ii) implies (i) and here I focus on proving that (i) implies (ii).
The key thing to understand is this: Claim If char(K) 6= 2 then every extension K ⊂ L

of degree [L : K] = 2 is of the form L = K(α) for some α ∈ L such that α2 ∈ K. I am going
to leave out the proof of the Claim (hint: quadratic formula) and I will use it to answer the
question.

So assume (i), then by the tower law [L : E] = 2 and [E : K] = 2 and by the Claim
L = E(α) for some α ∈ L with α2 ∈ E. Also E = K(β) where β2 ∈ K. Hence we can write
α2 = u+ vβ with u, v ∈ K, so

(α2 − u)2 = v2β2 ∈ K

hence α is a root of the polynomial

f(X) = (X2 − u)2 − v2β2 = X4 − 2uX2 + (u2 − v2β2) ∈ K[X]

which is of the required form. If f(X) ∈ K[X] is irreducible then we are done.
So what if f(X) is not irreducible? This is really awkward ! In that case by the tower law

[K(α) : K] = 2 and the minimal polynomial of α over K is a quadratic polynomial

X2 + cX + d ∈ K[X]

and necessarily c = 0, otherwise α = −α2−d
c
∈ E, a contradiction. Hence in fact α2 ∈ K and

we have extensions:

L = K(α, β)

E = K(β)

77

F = K(α)

gg

K

66hh
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where β2 = b ∈ K and α2 = a ∈ K BUT also, clearly, α 6∈ K(β) and β 6∈ K(α).

Remark there is a third field, G = K(αβ), distinct from E, F , and also of degree
[G : K] = 2. Note also that (αβ)2 = ab ∈ K. (I leave all this to you to sort out.)

I now want to work with the element α+ β ∈ L: I claim that it has degree 4 over K, and
then L = K(α + β) and, since

(α + β)2 = a+ b+ 2αβ ∈ G, (1)

the argument above shows that the minimal polynomial of α + β has the required form.
Suppose for a contradiction that α + β satisfies a quadratic polynomial

X2 + AX +B ∈ K[X]

If A = 0 then we have that (α + β)2 = −B ∈ K, and this implies (by Equation 1) that

αβ ∈ K, a contradiction. If A 6= 0 then α + β = −(α+β)2−B
A

∈ G (Equation 1 again) and the
polynomial

g(X) = (X − α)(X − β) = X2 − (α + β)X + αβ

is in G[X]. This polynomial is irreducible, otherwise its roots α, β already belong to G, so
L = G and we get a contradiction in too many ways (for instance [L : K] = [G : K] = 2).
But then g(X) equals X2 − a, the minimal polynomial of α over K[X], and this then leads
to a contradiction in too many ways (for instance it implies that α = −β).

Q 10. This is not difficult at all. Go back to your notes of the discussion of X3 − 2 at the
beginning of the course and make the appropriate minor changes.

Q 11. Let’s start by adjoining one root of x4 − p, say, α, the positive real 4th root of p. We
get a field K = Q(α). By Eisenstein, x4 − p is irreducible over Q, so [K : Q] = 4. Is K a
splitting field? No, because it’s a subfield of the reals, and x4 − p has some non-real roots
(namely ±iα). However K does contain two roots of x4 − p, namely ±α, so x4 − p must
factor as (x+α)(x−α)q(x), with q(x) ∈ K[x] of degree 2 and irreducible (as no roots in K).
If β = iα is a root of q(x) and F = K(β) then [F : K] = 2 so [F : Q] = 8 by the tower law.
We can alternatively write F = K(i) as β = iα, so F = Q(i, α).

F is a splitting field over Q so it’s finite, normal and separable (separability isn’t an
issue as we’re in characteristic 0). So we know Gal(F/Q) has size 8. We also know that if
τ : F → F is an isomorphism then τ(α) had better be a 4th root of τ(p) = p, so it’s ±α
or ±iα; there are at most 4 choices for τ(α). Similarly τ(i) = ±i so there are at most 2
choices for τ(i). This gives at most 8 choices for τ ; however we know that Gal(F/Q) has
size 8, so all eight choices must work. It is not hard now to convince yourself that Gal(F/Q)
is isomorphic to D8 (think of a square with corners labelled α, iα,−α,−iα).
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