M3P11 (and M4P11, M5P11) Galois Theory, Solutions
to Worksheet, 2

Alessio Corti
10th March 2020

Q 1. (i) 7 clearly satisfies (7 — 1)? = 3, so it’s a root of the polynomial (z® — 1)? — 3 which
is 2% — 22® — 2. By the Eisenstein criterion this polynomial is irreducible, so it must be the
min poly of v, and the degree of v over Q is 6.

Note that v/3 = 72 —1 € Q(7) so if F = Q(y) and K = Q(v/3) we must have Q C K C F
and the tower law gives 2[F : K| = [K : Q|[F : K] = [F : Q] = 6, and we deduce [F': K] = 3.
Because F contains v/3 it must contain K and it’s not hard to deduce that F = K (7). By
the tower law again, the degree of v over K must then be 3.

Note that if one could show that 2° — (1 + v/3) were irreducible in K[z] then this would
be another way to do the question, but I did not explain any techniques for tackling this.

(ii) Even more evil trick question. Turns out § = 14 /3 (cube it out to check) so the
degree is 2 over Q and also over @(ﬂ), the latter because we saw in some previous question

that § ¢ Q(+v/2) (it would imply v/3 € Q(v/2)).

Q 2. (a) Well 22 = w?a® =1 x2 =250 z is a root of 3 — 2 = 0, which is irreducible over Q
because it has no root in Q, so #® — 2 is the min poly of z, and by what we did in class this
means [Q(z) : Q] = 3. Although we don’t need it, we can note that in fact Q(z) is isomorphic
to, but not equal to, Q(«), as an abstract field.

(b) We know w® = 1 but w # 1 so w is a root of (z* —1)/(x — 1) = 2> + z + 1. This
polynomial is irreducible as it has no rational (because no real) roots, so [Q(w) : Q] = 2.
Note also while we're here that solving the quadratic gives w = % (
the imaginary part of w is positive; the other root is w?).

plus sign because

(c) We have a € R. Furthermore @ is another cube root of 1 so it must be w?. Hence
Z = wa = w?’a = wz. In particular if 7 € Q(z) then w = Z/2 € Q(z). This means
Q(w) € Q(2), and by the first two parts and the tower law we deduce [Q(z) : Q(w)] = 2,
which is nonsense because the dimension of a (finite-dimensional) vector space is a whole
number.

(d) If x € Q(z) then Z = —z 4 2z € Q(z), contradiction. So z is not in. If i € Q(z) then
Q(7) € Q(z) and this contradicts the tower law like in part(c). Finally because the imaginary
part of w is v/3/2 we see y = av/3/2, so if y € Q(w) then 3° = 30%/8v/3 = 3/4V/3 € Q(2),
implying v/3 € Q(z) which again contradicts the tower law.



Q 3. (a) We know 0 is the additive identity in R so 04+0 = 0. Hence 0x = (04 0)x = 0z + 0z
and subtracting 0z (which we can do, because (R, +) is a group so 0z has an additive inverse)
we deduce 0 = Ozx.

(b) If @ # 0 and b # 0 then there exist multiplicative inverses a=! and b~!, and now
abb™'a™! =1 x 1 = 1. However if ab = 0 then we deduce 0(b~'a™!) = 1 which contradicts
part (a) (as 0 # 1 in a field).

(c) Look at top degree terms.
(d) fh = gh implies (f — g)h =0, and if h # 0 we must have f — g = 0 by (c).

Q 4. (i) Spot root x = 2; so 2® — 8 = (z — 2)(z* + 2z + 4) and roots of the quadratic are
non-real and hence non-rational, so the quadratic must be irreducible (as any factors would
be linear).

(ii) Irreducible by Eisenstein (p = 2 or p = 3).

(iii) The polynomial 22 — 2z + 2 is a factor; dividing out we see z* +4 = (22 —2x+2) (2% +
2z + 2). Easy check now that both quadratics have non-real and hence non-rational roots,
so must be irreducible.

(iv) Either this is irreducible over @, or there is a root in Q (because any factorization
must involve a linear term). So let’s substitute in x = p/q in lowest terms (i.e. ged(p, q) = 1)
and see what happens. Clearing denominators we get

2p° + 5p*q + 5pg® + 3¢° = 0.

Now p divides the first three terms of the left hand side, so must divide the fourth which is
3¢%. But p and ¢ are coprime! So p must divide 3. A similar argument shows that ¢ must
divide 2. So p = +1 or 43 and ¢ = £1 or £2. Clearly no positive rational is a root (as all
the coefficients are positive) so we are left with the possibilities z = —1, —1/2, —3, —3/2 and
we just try all of them. Miraculously + = —3/2 does work! Pulling off the corresponding
linear factor gives

220 + 522 + 50 +3 = (20 +3)(2® +x + 1)

and the quadratic term has no real roots and hence no rational ones, so this is the factorization
into irreducibles.

(v) This one is irreducible by Eisenstein with p = 3.

(vi) There’s an obvious factor of z — 1 and the other factor ™ + 2™ + -+ + 2 + 1 is
irreducible. To see this first substitute y = x — 1, then apply Eisenstein with p = 73 prime.

(vii) This polynomial is obtainable from the polynomial in part (vi): start with the part
(vi) polynomial, change = to —z and then change the sign of the polynomial. These sorts
of things do not affect things like irreducibility and factorization, so the factorization will be
(r 4+ 1)(z™ — 2™ +... — 2+ 1) and the degree 72 polynomial will be irreducible.

(viii) Spot roots z = 1 and & = —1. Over the complexes we have more roots too, like +i
and so on — how do these control factorization over the rationals? Well (z —1i) and (x +1) are
factors over the complexes, so their product 22 + 1 is a factor over the complexes and hence
also over the rationals. Similarly the two complex cube roots of 1 are complex conjugates
and are the two roots of 2 + z + 1, and the two 6th roots of 1 that we haven’t mentioned



yet (e% and its complex conjugate) are roots of x? —x + 1. So we've just spotted factors
whose degrees add up to 8. Let’s see what we have so far then: the factors we have spotted
are

+ 1)z -+ ) (@ +z+ 1) -2+ 1)
2 (2 + )2+ + 1) (2* =2+ 1)

and so what is left is

(#2 = 1)/(z* = D) (2* + 2%+ 1)
=@+t + 1)/ + 22+ 1)
=zt -2 +1

The hardest part of this question is figuring out whether that last polynomial z* — 2% + 1
factors.

Q 5. The min poly of a must be x'® — 2 because this is irreducible over Q (by Eisenstein)
and has « as a root. In particular there is no non-zero polynomial of degree at most 9 with
rational coefficients and « as a root, so {1,a,a?,...,a”} are linearly independent elements
in a vector space of dimension 10, and hence are a basis.

Q 6. (i) To check that a subset of a field is a subfield all we need to do is to check 0 and 1 are
in, and that the subset is closed under addition, subtraction, multiplication, and division-
by-things-that-aren’t-zero. These things follow from the tower law: if o, 5 are algebraic then

[Q(a) : Q] < 00 and [Q(B) : Q] < oo, but then
[Q(a, B) : Q] = [Q(a)(8) : Q()][Q(ax) : Q] < [Q(B) : QJ[Q(ev) : Q] < 0

But then for all A € Q(a, 8) [Q(N) : Q] < o0, i.e., A is algebraic.

(ii) Say for a contradiction that [A: Q] =n < co. Let p(x) = 2" — 2 and let « € C be
a root. Then « is algebraic and its min poly must be p(z) as p(x) is monic and irreducible.
Son=[A:Q]=[4:Q(a)]Q(a): Q] =(n+1)[A: Q(a)] >n+1>mn, a contradiction.

(iii) For each n there are only countably many elements of Q[z] with degree at most
n, and a countable union of countable sets is countable, so there are only countably many
polynomials. Each algebraic number is a root of a non-zero polynomial in Q[z] and such a
polynomial has only finitely many roots, and a countable union of finite sets is countable, so
A is countable.

(iv) If [C : A] were finite then C would be isomorphic to A™ for some n € Z>; and hence
C would be countable, a contradiction.

Q 7. This is tedious and I am not going to do it; but I will make a few comments.

A polynomial of degree < 3 in F,[z] is irreducible if and only if it has no roots in F,, and
this can be checked by evaluating at all elements 0,...,p —1 € .

For example with p = 2 the only irreducible quadratic polynomial is:

2 4+r+1



and the irreducible cubic polynomials are:
P4+l B 4a?+1
For p = 3 there are 3 irreducible monic quadratic polynomials; they are:
2?+1, 224+x—-1, 2*—2-1

On the other hand, if you understand some of what we (by now) said about finite fields,
there are (27 — 3)/3 = 8 irreducible monic cubic polynomial, and it should not be too time-
consuming to write them all down.

For p = 5, again if you understand the last part of the question in Test 2, there are
(25—5)/2 = 10 irreducible monic quadratic (not too bad to list them all) and (125—5)/3 = 40
irreducible monic cubic polynomials in Fs[z] (OK so to do this by hand would be a bit
ridiculous. You can write your own computer program if you wish, or find a table on the
‘net).

Q 8. (a) The statement is obvious if b is a square in K so let us assume that it is not.
Suppose that there are z,y € K such that

a=(z+yvb)? = (2® + by?) + 2zyVb
Since 1, Vb are linearly independent over K, we must have that either
(i) y = 0, in which case a = 2% is a square in K, or
(ii) # = 0, in which case a = y?b and then ab = (yb)? is a square in K.

(b) Suppose say that a +  is a square in L. This means that there are z,y € K such
that
a+f=(v+yp)* = (2°+y°b) + 22yp

but then a — 3 = (z — yB)? is also a square in L, and
c=a’—-b= (CL + ﬁ)(a — ﬁ) = [(x + yﬁ)(ﬂf _ yﬂ)]2 —_ [272 o be]Q

is a square in L.

(¢) The roots are £v/a £ v/b; so choose 8, a, o/ € L such that > = b, a® = a + 3,
a'? = a — 3. We work with the diagram



First, [K(B) : K| = 2 since we are assuming that b is not a square in K.

Write Ky = K(8). I claim that [K(«) : K] = 2. Indeed, by Part (b), if a + 5 were a
square in K1, then also a — 3 would be a square in K; and then ¢ = (a + 3)(a — 8) = a*> — b
is a square in K, contradicting one of our assumptions.

Similarly, also [K (/) : Ki] = 2.

The conclusion of Part (c) follows from the tower law and the new claim: K;(«) #
K (o). Indeed suppose for a contradiction that o/ € Kj(«a): this is saying that a — [ is a
square in K;(v/a + ). From Part (a) with w = a— f and v = a+ f in K7, we conclude that
either:

(i) a — B is a square in K, contradicting the claim proved that [K;(«/) : K] = 2, or:
(ii) ¢ = (a — B)(a+ B) = a® — b is a square in K;.

Since the first alternative led to a contradiction, it must be that c is a square in K;. We
apply Part (a) again with u = ¢, v = b in K. We have ¢ a square in K(v/b), that is, either
c or ¢b is a square in K, contradicting our assumptions. This final contradiction shows that
Ki(a) # K;(d/) and finishes Part (c).

Q 9. It is easy to see that (ii) implies (i) and here I focus on proving that (i) implies (ii).

The key thing to understand is this: Claim If char(K) # 2 then every extension K C L
of degree [L : K] = 2 is of the form L = K(«) for some a € L such that o> € K. I am going
to leave out the proof of the Claim (hint: quadratic formula) and I will use it to answer the
question.

So assume (i), then by the tower law [L : E] = 2 and [E : K] = 2 and by the Claim
L = E(a) for some a € L with o? € E. Also E = K () where % € K. Hence we can write
a? = u+ v with u,v € K, so

(@® —u)? =v*f* € K

hence « is a root of the polynomial
f(X) = (X? —u)? —0?p% = X* — 2uX? + (u? —v?3?) € K[X]

which is of the required form. If f(X) € K[X] is irreducible then we are done.
So what if f(X) is not irreducible? This is really awkward! In that case by the tower law
[K(«) : K] =2 and the minimal polynomial of a over K is a quadratic polynomial

X’ +cX +de K[X]

. . _a2_ . . .
and necessarily ¢ = 0, otherwise o = %l € E, a contradiction. Hence in fact o € K and
we have extensions:

L= K(o,f)
/ \
E=K(j) F=K(a)
\K/

5



where 3> =b € K and o? = a € K BUT also, clearly, « ¢ K(8) and 8 ¢ K(«).

Remark there is a third field, G = K(af), distinct from E, F, and also of degree
|G : K] = 2. Note also that («3)? = ab € K. (I leave all this to you to sort out.)

I now want to work with the element o+ 3 € L: I claim that it has degree 4 over K, and
then L = K(a + ) and, since

(a+p)?=a+b+2a8 €, (1)

the argument above shows that the minimal polynomial of o + 8 has the required form.
Suppose for a contradiction that o + 3 satisfies a quadratic polynomial

X?+ AX + B € K[X]

If A= 0 then we have that (o + 8)> = —B € K, and this implies (by Equation [1)) that
af € K, a contradiction. If A # 0 then o+ § = W € G (Equation [1| again) and the

polynomial
9(X) = (X —a)(X = ) = X* — (a+ B)X +ap

is in G[X]. This polynomial is irreducible, otherwise its roots «, 8 already belong to G, so

L = G and we get a contradiction in too many ways (for instance [L : K] = [G : K| = 2).
But then g(X) equals X? — a, the minimal polynomial of @ over K[X], and this then leads
to a contradiction in too many ways (for instance it implies that a = —f3).

Q 10. This is not difficult at all. Go back to your notes of the discussion of X® — 2 at the
beginning of the course and make the appropriate minor changes.

Q 11. Let’s start by adjoining one root of z* — p, say, «, the positive real 4 root of p. We
get a field K = Q(«). By Eisenstein, 2! — p is irreducible over Q, so [K : Q] = 4. Is K a
splitting field? No, because it’s a subfield of the reals, and z* — p has some non-real roots
(namely +ia). However K does contain two roots of z* — p, namely +a, so z* — p must
factor as (z + a)(x — a)q(x), with ¢(z) € K|z] of degree 2 and irreducible (as no roots in K).
If p=1iais aroot of g(x) and F = K(f3) then [F: K] =2 so [F: Q] = 8 by the tower law.
We can alternatively write F' = K (i) as = iq, so F' = Q(i, ).

F is a splitting field over Q so it’s finite, normal and separable (separability isn’t an
issue as we'’re in characteristic 0). So we know Gal(F/Q) has size 8. We also know that if
7 : F — F is an isomorphism then 7(«) had better be a 4" root of 7(p) = p, so it’s +a
or £ic; there are at most 4 choices for 7(«). Similarly 7(i) = £i so there are at most 2
choices for 7(i). This gives at most 8 choices for 7; however we know that Gal(F'/Q) has
size 8, so all eight choices must work. It is not hard now to convince yourself that Gal(F/Q)
is isomorphic to Dy (think of a square with corners labelled o, ia, —c, —icv).



