M3P11 (and M4P11, M5P11) Galois Theory, Solutions to Worksheet 2

Alessio Corti

10th March 2020

Q 1. (i) γ clearly satisfies $(\gamma^3 - 1)^2 = 3$, so it's a root of the polynomial $(x^3 - 1)^2 - 3$ which is $x^6 - 2x^3 - 2$. By the Eisenstein criterion this polynomial is irreducible, so it must be the min poly of γ , and the degree of γ over \mathbb{Q} is 6.

Note that $\sqrt{3} = \gamma^3 - 1 \in \mathbb{Q}(\gamma)$ so if $F = \mathbb{Q}(\gamma)$ and $K = \mathbb{Q}(\sqrt{3})$ we must have $\mathbb{Q} \subseteq K \subseteq F$ and the tower law gives $2[F:K] = [K:\mathbb{Q}][F:K] = [F:\mathbb{Q}] = 6$, and we deduce [F:K] = 3. Because F contains $\sqrt{3}$ it must contain K and it's not hard to deduce that $F = K(\gamma)$. By the tower law again, the degree of γ over K must then be 3.

Note that if one could show that $x^3 - (1 + \sqrt{3})$ were irreducible in K[x] then this would be another way to do the question, but I did not explain any techniques for tackling this.

(ii) Even more evil trick question. Turns out $\delta = 1 + \sqrt{3}$ (cube it out to check) so the degree is 2 over \mathbb{Q} and also over $\mathbb{Q}(\sqrt{2})$, the latter because we saw in some previous question that $\delta \notin \mathbb{Q}(\sqrt{2})$ (it would imply $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$).

Q 2. (a) Well $z^3 = \omega^3 \alpha^3 = 1 \times 2 = 2$ so z is a root of $x^3 - 2 = 0$, which is irreducible over \mathbb{Q} because it has no root in \mathbb{Q} , so $x^3 - 2$ is the min poly of z, and by what we did in class this means $[\mathbb{Q}(z) : \mathbb{Q}] = 3$. Although we don't need it, we can note that in fact $\mathbb{Q}(z)$ is isomorphic to, but not equal to, $\mathbb{Q}(\alpha)$, as an abstract field.

(b) We know $\omega^3 = 1$ but $\omega \neq 1$ so ω is a root of $(x^3 - 1)/(x - 1) = x^2 + x + 1$. This polynomial is irreducible as it has no rational (because no real) roots, so $[\mathbb{Q}(\omega) : \mathbb{Q}] = 2$. Note also while we're here that solving the quadratic gives $\omega = \frac{-1+i\sqrt{3}}{2}$ (plus sign because the imaginary part of ω is positive; the other root is ω^2).

(c) We have $\alpha \in \mathbb{R}$. Furthermore $\overline{\omega}$ is another cube root of 1 so it must be ω^2 . Hence $\overline{z} = \overline{\omega\alpha} = \omega^2 \alpha = \omega z$. In particular if $\overline{z} \in \mathbb{Q}(z)$ then $\omega = \overline{z}/z \in \mathbb{Q}(z)$. This means $\mathbb{Q}(\omega) \subseteq \mathbb{Q}(z)$, and by the first two parts and the tower law we deduce $[\mathbb{Q}(z) : \mathbb{Q}(\omega)] = \frac{3}{2}$, which is nonsense because the dimension of a (finite-dimensional) vector space is a whole number.

(d) If $x \in \mathbb{Q}(z)$ then $\overline{z} = -z + 2x \in \mathbb{Q}(z)$, contradiction. So x is not in. If $i \in \mathbb{Q}(z)$ then $\mathbb{Q}(i) \subseteq \mathbb{Q}(z)$ and this contradicts the tower law like in part(c). Finally because the imaginary part of ω is $\sqrt{3}/2$ we see $y = \alpha\sqrt{3}/2$, so if $y \in \mathbb{Q}(\omega)$ then $y^3 = 3\alpha^3/8\sqrt{3} = 3/4\sqrt{3} \in \mathbb{Q}(z)$, implying $\sqrt{3} \in \mathbb{Q}(z)$ which again contradicts the tower law.

Q 3. (a) We know 0 is the additive identity in R so 0+0=0. Hence 0x = (0+0)x = 0x + 0x and subtracting 0x (which we can do, because (R, +) is a group so 0x has an additive inverse) we deduce 0 = 0x.

(b) If $a \neq 0$ and $b \neq 0$ then there exist multiplicative inverses a^{-1} and b^{-1} , and now $abb^{-1}a^{-1} = 1 \times 1 = 1$. However if ab = 0 then we deduce $0(b^{-1}a^{-1}) = 1$ which contradicts part (a) (as $0 \neq 1$ in a field).

- (c) Look at top degree terms.
- (d) fh = gh implies (f g)h = 0, and if $h \neq 0$ we must have f g = 0 by (c).

Q 4. (i) Spot root x = 2; so $x^3 - 8 = (x - 2)(x^2 + 2x + 4)$ and roots of the quadratic are non-real and hence non-rational, so the quadratic must be irreducible (as any factors would be linear).

(ii) Irreducible by Eisenstein (p = 2 or p = 3).

(iii) The polynomial $x^2 - 2x + 2$ is a factor; dividing out we see $x^4 + 4 = (x^2 - 2x + 2)(x^2 + 2x + 2)$. Easy check now that both quadratics have non-real and hence non-rational roots, so must be irreducible.

(iv) Either this is irreducible over \mathbb{Q} , or there is a root in \mathbb{Q} (because any factorization must involve a linear term). So let's substitute in x = p/q in lowest terms (i.e. gcd(p,q) = 1) and see what happens. Clearing denominators we get

$$2p^3 + 5p^2q + 5pq^2 + 3q^3 = 0.$$

Now p divides the first three terms of the left hand side, so must divide the fourth which is $3q^3$. But p and q are coprime! So p must divide 3. A similar argument shows that q must divide 2. So $p = \pm 1$ or ± 3 and $q = \pm 1$ or ± 2 . Clearly no positive rational is a root (as all the coefficients are positive) so we are left with the possibilities x = -1, -1/2, -3, -3/2 and we just try all of them. Miraculously x = -3/2 does work! Pulling off the corresponding linear factor gives

$$2x^{3} + 5x^{2} + 5x + 3 = (2x + 3)(x^{2} + x + 1)$$

and the quadratic term has no real roots and hence no rational ones, so this is the factorization into irreducibles.

(v) This one is irreducible by Eisenstein with p = 3.

(vi) There's an obvious factor of x - 1 and the other factor $x^{72} + x^{71} + \cdots + x + 1$ is irreducible. To see this first substitute y = x - 1, then apply Eisenstein with p = 73 prime.

(vii) This polynomial is obtainable from the polynomial in part (vi): start with the part (vi) polynomial, change x to -x and then change the sign of the polynomial. These sorts of things do not affect things like irreducibility and factorization, so the factorization will be $(x + 1)(x^{72} - x^{71} + ... - x + 1)$ and the degree 72 polynomial will be irreducible.

(viii) Spot roots x = 1 and x = -1. Over the complexes we have more roots too, like $\pm i$ and so on – how do these control factorization over the rationals? Well (x-i) and (x+i) are factors over the complexes, so their product $x^2 + 1$ is a factor over the complexes and hence also over the rationals. Similarly the two complex cube roots of 1 are complex conjugates and are the two roots of $x^2 + x + 1$, and the two 6th roots of 1 that we haven't mentioned

yet $(e^{\frac{2\pi i}{6}})$ and its complex conjugate) are roots of $x^2 - x + 1$. So we've just spotted factors whose degrees add up to 8. Let's see what we have so far then: the factors we have spotted are

$$(x+1)(x-1)(x^{2}+1)(x^{2}+x+1)(x^{2}-x+1)$$

= $(x^{2}-1)(x^{2}+1)(x^{2}+x+1)(x^{2}-x+1)$
= $(x^{4}-1)(x^{4}+x^{2}+1)$

and so what is left is

$$(x^{12} - 1)/(x^4 - 1)(x^4 + x^2 + 1)$$

= $(x^8 + x^4 + 1)/(x^4 + x^2 + 1)$
= $x^4 - x^2 + 1$

The hardest part of this question is figuring out whether that last polynomial $x^4 - x^2 + 1$ factors.

Q 5. The min poly of α must be $x^{10} - 2$ because this is irreducible over \mathbb{Q} (by Eisenstein) and has α as a root. In particular there is no non-zero polynomial of degree at most 9 with rational coefficients and α as a root, so $\{1, \alpha, \alpha^2, \ldots, \alpha^9\}$ are linearly independent elements in a vector space of dimension 10, and hence are a basis.

Q 6. (i) To check that a subset of a field is a subfield all we need to do is to check 0 and 1 are in, and that the subset is closed under addition, subtraction, multiplication, and divisionby-things-that-aren't-zero. These things follow from the tower law: if α, β are algebraic then $[\mathbb{Q}(\alpha):\mathbb{Q}] < \infty$ and $[\mathbb{Q}(\beta):\mathbb{Q}] < \infty$, but then

$$[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = [\mathbb{Q}(\alpha)(\beta):\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}] \le [\mathbb{Q}(\beta):\mathbb{Q}][\mathbb{Q}(\alpha):\mathbb{Q}] < \infty$$

But then for all $\lambda \in \mathbb{Q}(\alpha, \beta)$ $[\mathbb{Q}(\lambda) : \mathbb{Q}] < \infty$, i.e., λ is algebraic.

(ii) Say for a contradiction that $[A : \mathbb{Q}] = n < \infty$. Let $p(x) = x^{n+1} - 2$ and let $\alpha \in \mathbb{C}$ be a root. Then α is algebraic and its min poly must be p(x) as p(x) is monic and irreducible. So $n = [A : \mathbb{Q}] = [A : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = (n+1)[A : \mathbb{Q}(\alpha)] \ge n+1 > n$, a contradiction.

(iii) For each n there are only countably many elements of $\mathbb{Q}[x]$ with degree at most n, and a countable union of countable sets is countable, so there are only countably many polynomials. Each algebraic number is a root of a non-zero polynomial in $\mathbb{Q}[x]$ and such a polynomial has only finitely many roots, and a countable union of finite sets is countable, so A is countable.

(iv) If $[\mathbb{C} : A]$ were finite then \mathbb{C} would be isomorphic to A^n for some $n \in \mathbb{Z}_{\geq 1}$ and hence \mathbb{C} would be countable, a contradiction.

Q 7. This is tedious and I am not going to do it; but I will make a few comments.

A polynomial of degree ≤ 3 in $\mathbb{F}_p[x]$ is irreducible if and only if it has no roots in \mathbb{F}_p , and this can be checked by evaluating at all elements $0, \ldots, p-1 \in \mathbb{F}_p$.

For example with p = 2 the only irreducible quadratic polynomial is:

$$x^2 + x + 1$$

and the irreducible cubic polynomials are:

$$x^3 + x + 1$$
, $x^3 + x^2 + 1$

For p = 3 there are 3 irreducible monic quadratic polynomials; they are:

$$x^2 + 1$$
, $x^2 + x - 1$, $x^2 - x - 1$

On the other hand, if you understand some of what we (by now) said about finite fields, there are (27 - 3)/3 = 8 irreducible monic cubic polynomial, and it should not be too time-consuming to write them all down.

For p = 5, again if you understand the last part of the question in Test 2, there are (25-5)/2 = 10 irreducible monic quadratic (not too bad to list them all) and (125-5)/3 = 40 irreducible monic cubic polynomials in $\mathbb{F}_5[x]$ (OK so to do this by hand would be a bit ridiculous. You can write your own computer program if you wish, or find a table on the 'net).

Q 8. (a) The statement is obvious if b is a square in K so let us assume that it is not. Suppose that there are $x, y \in K$ such that

$$a = (x + y\sqrt{b})^2 = (x^2 + by^2) + 2xy\sqrt{b}$$

Since $1, \sqrt{b}$ are linearly independent over K, we must have that **either**

(i) y = 0, in which case $a = x^2$ is a square in K, or

(ii) x = 0, in which case $a = y^2 b$ and then $ab = (yb)^2$ is a square in K.

(b) Suppose say that $a + \beta$ is a square in L. This means that there are $x, y \in K$ such that

$$a + \beta = (x + y\beta)^2 = (x^2 + y^2b) + 2xy\beta$$

but then $a - \beta = (x - y\beta)^2$ is also a square in L, and

$$c = a^{2} - b = (a + \beta)(a - \beta) = [(x + y\beta)(x - y\beta)]^{2} = [x^{2} - y^{2}b]^{2}$$

is a square in L.

(c) The roots are $\pm \sqrt{a \pm \sqrt{b}}$; so choose β , α , $\alpha' \in L$ such that $\beta^2 = b$, $\alpha^2 = a + \beta$, $\alpha'^2 = a - \beta$. We work with the diagram

First, $[K(\beta) : K] = 2$ since we are assuming that b is not a square in K.

Write $K_1 = K(\beta)$. I claim that $[K(\alpha) : K_1] = 2$. Indeed, by Part (b), if $a + \beta$ were a square in K_1 , then also $a - \beta$ would be a square in K_1 and then $c = (a + \beta)(a - \beta) = a^2 - b$ is a square in K, contradicting one of our assumptions.

Similarly, also $[K(\alpha'): K_1] = 2$.

The conclusion of Part (c) follows from the tower law and the **new claim**: $K_1(\alpha) \neq K_1(\alpha')$. Indeed suppose for a contradiction that $\alpha' \in K_1(\alpha)$: this is saying that $a - \beta$ is a square in $K_1(\sqrt{a+\beta})$. From Part (a) with $u = a - \beta$ and $v = a + \beta$ in K_1 , we conclude that either:

(i) $a - \beta$ is a square in K_1 , contradicting the claim proved that $[K_1(\alpha'): K_1] = 2$, or:

(ii)
$$c = (a - \beta)(a + \beta) = a^2 - b$$
 is a square in K_1 .

Since the first alternative led to a contradiction, it must be that c is a square in K_1 . We apply Part (a) again with u = c, v = b in K. We have c a square in $K(\sqrt{b})$, that is, either c or cb is a square in K, contradicting our assumptions. This final contradiction shows that $K_1(\alpha) \neq K_1(\alpha')$ and finishes Part (c).

Q 9. It is easy to see that (ii) implies (i) and here I focus on proving that (i) implies (ii).

The key thing to understand is this: Claim If $char(K) \neq 2$ then every extension $K \subset L$ of degree [L:K] = 2 is of the form $L = K(\alpha)$ for some $\alpha \in L$ such that $\alpha^2 \in K$. I am going to leave out the proof of the Claim (hint: quadratic formula) and I will use it to answer the question.

So assume (i), then by the tower law [L : E] = 2 and [E : K] = 2 and by the Claim $L = E(\alpha)$ for some $\alpha \in L$ with $\alpha^2 \in E$. Also $E = K(\beta)$ where $\beta^2 \in K$. Hence we can write $\alpha^2 = u + v\beta$ with $u, v \in K$, so

$$(\alpha^2 - u)^2 = v^2 \beta^2 \in K$$

hence α is a root of the polynomial

$$f(X) = (X^2 - u)^2 - v^2 \beta^2 = X^4 - 2uX^2 + (u^2 - v^2 \beta^2) \in K[X]$$

which is of the required form. If $f(X) \in K[X]$ is irreducible then we are done.

So what if f(X) is not irreducible? This is *really awkward*! In that case by the tower law $[K(\alpha): K] = 2$ and the minimal polynomial of α over K is a quadratic polynomial

$$X^2 + cX + d \in K[X]$$

and necessarily c = 0, otherwise $\alpha = \frac{-\alpha^2 - d}{c} \in E$, a contradiction. Hence in fact $\alpha^2 \in K$ and we have extensions:

where $\beta^2 = b \in K$ and $\alpha^2 = a \in K$ BUT also, clearly, $\alpha \notin K(\beta)$ and $\beta \notin K(\alpha)$.

Remark there is a third field, $G = K(\alpha\beta)$, distinct from E, F, and also of degree [G:K] = 2. Note also that $(\alpha\beta)^2 = ab \in K$. (I leave all this to you to sort out.)

I now want to work with the element $\alpha + \beta \in L$: I claim that it has degree 4 over K, and then $L = K(\alpha + \beta)$ and, since

$$(\alpha + \beta)^2 = a + b + 2\alpha\beta \in G,\tag{1}$$

the argument above shows that the minimal polynomial of $\alpha + \beta$ has the required form.

Suppose for a contradiction that $\alpha + \beta$ satisfies a quadratic polynomial

$$X^2 + AX + B \in K[X]$$

If A = 0 then we have that $(\alpha + \beta)^2 = -B \in K$, and this implies (by Equation 1) that $\alpha\beta \in K$, a contradiction. If $A \neq 0$ then $\alpha + \beta = \frac{-(\alpha + \beta)^2 - B}{A} \in G$ (Equation 1 again) and the polynomial

$$g(X) = (X - \alpha)(X - \beta) = X^2 - (\alpha + \beta)X + \alpha\beta$$

is in G[X]. This polynomial is irreducible, otherwise its roots α, β already belong to G, so L = G and we get a contradiction in too many ways (for instance [L : K] = [G : K] = 2). But then g(X) equals $X^2 - a$, the minimal polynomial of α over K[X], and this then leads to a contradiction in too many ways (for instance it implies that $\alpha = -\beta$).

Q 10. This is not difficult at all. Go back to your notes of the discussion of $X^3 - 2$ at the beginning of the course and make the appropriate minor changes.

Q 11. Let's start by adjoining one root of $x^4 - p$, say, α , the positive real 4th root of p. We get a field $K = \mathbb{Q}(\alpha)$. By Eisenstein, $x^4 - p$ is irreducible over \mathbb{Q} , so $[K : \mathbb{Q}] = 4$. Is K a splitting field? No, because it's a subfield of the reals, and $x^4 - p$ has some non-real roots (namely $\pm i\alpha$). However K does contain two roots of $x^4 - p$, namely $\pm \alpha$, so $x^4 - p$ must factor as $(x + \alpha)(x - \alpha)q(x)$, with $q(x) \in K[x]$ of degree 2 and irreducible (as no roots in K). If $\beta = i\alpha$ is a root of q(x) and $F = K(\beta)$ then [F : K] = 2 so $[F : \mathbb{Q}] = 8$ by the tower law. We can alternatively write F = K(i) as $\beta = i\alpha$, so $F = \mathbb{Q}(i, \alpha)$.

F is a splitting field over \mathbb{Q} so it's finite, normal and separable (separability isn't an issue as we're in characteristic 0). So we know $\operatorname{Gal}(F/\mathbb{Q})$ has size 8. We also know that if $\tau: F \to F$ is an isomorphism then $\tau(\alpha)$ had better be a 4th root of $\tau(p) = p$, so it's $\pm \alpha$ or $\pm i\alpha$; there are at most 4 choices for $\tau(\alpha)$. Similarly $\tau(i) = \pm i$ so there are at most 2 choices for $\tau(i)$. This gives at most 8 choices for τ ; however we know that $\operatorname{Gal}(F/\mathbb{Q})$ has size 8, so all eight choices must work. It is not hard now to convince yourself that $\operatorname{Gal}(F/\mathbb{Q})$ is isomorphic to D_8 (think of a square with corners labelled $\alpha, i\alpha, -\alpha, -i\alpha$).