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Q 1. (a) Doing long division we see x5 + x + 1 = (x3 − x)(x2 + 1) + 2x + 1 so the quotient
is x3 − x and the remainder is 2x+ 1.

(b) If x2019+32x53+8 = q(x)(x−1)+r(x) then either r(x) = 0 or deg(r) < deg(x−1) = 1
so in either case r is a constant. Evaluating the equation at x = 1 shows us that r(x) =
1 + 32 + 8 = 41.

(c)

2x3 + 2x2 + 3x+ 2 = (2x+ 2)(x2 + 1) + x

x2 + 1 = (x)(x) + 1

x = x× 1 + 0

so the last non-zero remainder is 1. Now working backwards,

1 = (x2 + 1)− (x)(x)

= (x2 + 1)− x[2x3 + 2x2 + 3x+ 2− (2x+ 2)(x2 + 1)]

= (2x2 + 2x+ 1)(x2 + 1)− x(2x3 + 2x2 + 3x+ 2)

so, if I got it right, one possibility is s(x) = −x and t(x) = 2x2 + 2x+ 1. If you got another
solution it doesn’t mean you are wrong, because there is more than one answer to this sort
of question just as in the case of usual integers—for example, you can add x2 + 1 to s and
subtract 2x3 + 2x2 + 3x + 2 from t and get a new solution that still works (another bonus
question: what’s the most general solution? Can you prove it?).

Bonus part: I knew they were coprime in Q[x] because they have no roots in common in
the bigger ring C[x] – it’s easy to check this because the roots of x2 + 1 are ±i and neither
of these is a root of 2x3 + 2x2 + 3x+ 2, as you can see by substituting in. Can you see why
this is enough?

(d) Euclid again:

x4 + 4 = x(x3 − 2x+ 4) + 2x2 − 4x+ 4

x3 − 2x+ 4 = (x/2 + 1)(2x2 − 4x+ 4) + 0

and after that mercifully short procedure we see that the last non-zero remainder is 2x2 −
4x + 4. Now hcf’s don’t really care about constants, so x2 − 2x + 2 is another hcf which is
kind of nicer (in my opinion), but let’s work with what we have and go backwards:
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2x2 − 4x+ 4 = (x4 + 4)− x(x3 − 2x+ 4)

oh and that’s it isn’t it – there are serious advantages to Euclid only taking 2 steps! So
a(x) = 1 and b(x) = −x. Actually I see now that the “nicer” hcf wasn’t perhaps so nice
because then we would have had fractions in a and b.

(e) Just one long division gives:

−1

3
(x3 − 2) +

x2 − x+ 1

3
(x+ 1) = 1

Q 2. (a) The previous question, part (e), suggests that we take a = 1/3, b = −1/3, c = 1/3.

(b) The matrix of multiplication by A+Bξ + ξ2 in the basis 1, ξ, ξ2 is:

T =

A 2 2B
B A 2
1 B A


We find a, b, c by solving the system:

T

ab
c

 =

1
0
0


The Cramer rule gives, setting

D = detT = A3 + 2B3 − 6AB + 4,

the expressions:

a =
A2 − 2B

D
, b =

−AB + 2

D
, c =

B2 − A
D

(What does D = 0 mean?)

Q 3. The hcf has the property that all other common divisors divide it. So by definition
s | t and t | s, so looking at top degree terms we deduce that the degrees of s and t must be
equal, and s = tr for a polynomial r of degree 0, that is, a non-zero constant.

Q 4. (a) Divide g by f in K[x] and get a quotient and a remainder, and then pretend
eveything is in L[x] and use uniqueness of quotient and remainder to do this part immediately.

(b) First part no, e.g. 2x + 2 | x + 1 in Q[x]. Second part yes, and again prove it by
figuring out q(x) such that g(x) = f(x)q(x) by long division and noting that you only ever
have to divide by 1 when figuring out the coefficients of g.

Q 5. (a) If
√
n = p/q in lowest terms (with p, q ∈ Z and q 6= 0) then we deduce that nq2 = p2.

In particular q2 divides p2 – but q2 and p2 are coprime, so q2 = 1, so p/q ∈ Z.

(b) We know Q(
√

2) = {a+b
√

2 : a, b ∈ Q}. We now prove
√

3 6∈ Q(
√

2) by contradiction.
If
√

3 = a + b
√

2 with a, b ∈ Q then squaring both sides and tidying up, we deduce
2ab
√

2 ∈ Q. But
√

2 6∈ Q by part (a), so 2ab = 0, so either a = 0 or b = 0. If b = 0 then
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√
3 ∈ Q, contradicting part (a). If a = 0 then

√
3 = b

√
2 and multiplying both sides by

√
2

we deduce
√

6 ∈ Q, also contradicting part (a). Either way we’re there, so
√

3 6∈ Q(
√

2).
The min poly of

√
3 over Q(

√
2) must then be x2−3. Why? It’s monic, and has coefficients

in the right field, so the only issue is whether it’s irreducible. And it is, because if it factored
then it would have to factor into two linear factors, and one of them would be (up to a
constant) x −

√
3, but we’ve just shown that this polynomial does not have coefficients in

Q(
√

2).

(c) [Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3)/Q(
√

2)][Q(
√

2) : Q] = 2 × 2 = 4. We know both
extensions on the right have degree 2; for one it’s clear and for the other it comes from
part (b) and a result proved in class ([K(λ) : K] is the degree of the minimal polynomial of
λ over K).

Q 6. (a) If α =
√

2 +
√

3 then α2 = 5 + 2
√

6 and hence
√

6 = (α2 − 5)/2 ∈ Q(α). Hence
β :=

√
6α =

√
12 +

√
18 = 2

√
3 + 3

√
2 ∈ Q(α). So

√
2 = β − 2α ∈ Q(α) and now√

3 = α−
√

2 ∈ Q(α).
We deduce that Q(α) contains

√
2 and

√
3, so it contains Q(

√
2,
√

3). The converse
inclusion is obvious, so the two fields are equal.

(b) p(x) = x4 − 10x2 + 1 can be checked to be a polynomial in Q[x] such that p(α) = 0.
Hence it is a multiple of the minimal polynomial of α. But part (a) and [Q(α) : Q] =
deg(minimal poly. of a) imply that the degree of the min poly of α is 4, so p(x) must be a
constant multiple of this min poly, so it must be the min poly, so it must be irreducible.

Q 7. Answer is yes! It’s 1
3

√
6
√

15.

Q 8. If [L : K] is infinite then E has an infinite-dimensional K-subspace and hence must be
infinite-dimensional over K (for any n ≥ 1 we can choose n K-linearly independent elements
of L and these give n K-linearly independent elements of E).

If [E : L] is infinite, then [E : K] must also be infinite, because for any n we can choose
n elements of E that are L-linearly independent, and these are easily checked to also be
K-linearly independent.

Q 9. (a) This is a variant of the Tower Law argument: Let e1, . . . , en be a basis for L/K
and f1, . . . , fm be a basis for V/L. Then ei ∈ L and fj ∈ V , and V is an L-vector space, so
gij = eifj makes sense. Of course the claim is that the gij form a basis for V considered as a
K-vector space, and the same proof as in the tower law works: the gij span because if v ∈ V
then write v as an L-linear combination of the fj and then write each coefficient as a K-linear
combination of the ei, and multiply out. For linear independence, if a linear combination∑

i,j µijgij = 0 then write this as
∑

j(
∑

i µijei)fj =
∑

j λjfj and by linear independence of
the fj over L we know the λj must be zero, and this means the µij are all zero by linear
independence of the ei over K.

(b) So?

Q 10. Long division (for example) of f(X) by X − α yields:

f(X) = (X − α)
(
X2 + αX + (−3 + α2)

)
∈ L[X]
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The quadratic formula for g(X) needs the square root of

∆ = b2 − 4ac = α2 − 4(−3 + α2) = 12− 3α2

which is explicitly shown to be a square in the hint.

[Note: if char(K) = 3, then f(x) = x3 + 1 = (x+ 1)(x2 − x+ 1) is not irreducible.]

Q 11. (a) We have
u 7→ α2 + ωα3 + ω2α1 = ωu

and, similarly, v 7→ ω2v.

(b) Using that ω + ω2 = −1 and α1 + α2 + α3 = 0, we get, for example:

u+ v

3
=
α1 + α1 − α2 − α3

3
= α1

and, similarly, α2 = ω2u+ωv
3

, α3 = ωu+ω2v
3

.

(c) It is pretty obvious that τ(u) = v and τ(v) = u. The rest of this question requires
considerable work and we may return to this point later in the lectures, when we study the
Galois group of splitting fields of cubic polynomials in general.

We must use the following facts from M1F:

α1 + α2 + α3 = 0, (α2α3 + α1α3 + α1α2) = 3p, α1α2α3 = −2q

We will also need to use the (elementary) algebraic identity:

(z1 + z2 + z3)(z2z3 + z1z3 + z1z2) = (z21z2 + z21z3 + z1z
2
2 + z22z3 + z1z

2
3 + z2z

2
3) + 3z1z2z3

We compute by brute force uv and u3 + v3: from these quantities it is easy to construct the
sought-for quadratic equation. A direct calculation (using ω + ω2 = −1!) shows that:

uv = α2
1 + α2

2 + α2
3 − α1α2 − α1α3 − α2α3 = (α1 + α2 + α3)

2 − 3(α1α2 + α1α3 + α2α3) = −9p

and:

u3 + v3 = 2(α3
1 + α3

2 + α3
3)− 3(α2

1α2 + α2
1α3 + α1α

2
2 + α2

2α3 + α1α
2
3 + α2α

2
3) + 12α1α2α3 =

= 2(α1 + α2 + α3)
2 − 9(α2

1α2 + α2
1α3 + α1α

2
2 + α2

2α3 + α1α
2
3 + α2α

2
3) =

= 27α1α2α3 = −27× 2q

Now write down the quadratic equation and deduce the cubic formula!
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