Course: M3/4/5P11 Galois Theory, Progress Test 2, 18/03/2020
This test is worth 20 marks. You are allowed to use any and all results proven in class. You don't need to state the results you use in full, a clear reference is sufficient.
Q 1 Consider field extensions $K \subset F_{1}, F_{2} \subset L$. For each of the following statements, provide either a proof or a counterexample.
(a) If $K \subset F_{1}$ is separable, then $F_{2} \subset F_{1} F_{2}$ is separable.
(b) If $F_{2} \subset F_{1} F_{2}$ is normal, then $K \subset F_{1}$ is normal.

Q 2

(a) Draw a diagram showing all the intermediate fields of the extension $\mathbb{F}_{3} \subset \mathbb{F}_{3^{12}}$ and the inclusions between them.
(b) How many monic degree 12 irreducible polynomials are there in $\mathbb{F}_{3}[X]$?

ANSWERS (Each part is worth 5 marks)
A 1 (a) The statement is true. Indeed if $F_{1}=K\left(a_{1}, \ldots, a_{r}\right)$ then $F_{1} F_{2}=F_{2}\left(a_{1}, \ldots, a_{r}\right)$. To say that $K \subset F_{1}$ is separable is the same as saying that a_{1}, \ldots, a_{r} are separable over K. If this is the case, then a fortiori a_{1}, \ldots, a_{r} are separable over F_{2}, and then $F_{1} F_{2}$ is separable over F_{2}.
(b) The statement is false. A counterexample is given by the fields $K=\mathbb{Q}, F_{1}=\mathbb{Q}(\sqrt[3]{2})$ (well-known to be non-normal), $F_{2}=\mathbb{Q}(\sqrt{-3})$ (equivalently, $F_{2}=\mathbb{Q}(\omega)$ where $\omega \in \mu_{3}$ is a primitive cube root of 1), and $F_{1} F_{2}=L$ the splitting field over \mathbb{Q} of the polynomial $x^{3}-2$ and hence $\mathbb{Q} \subset F_{1} F_{2}$ is normal, and hence $F_{2} \subset F_{1} F_{2}$ is also normal by general properties of normal extensions.
A 2 (a) This is the same as the diagram of divisors of 12 . The question does not ask for a proof:

(b) In $\mathbb{F}_{3^{12}}$, we have $\mathbb{F}_{3^{6}} \cap \mathbb{F}_{3^{4}}=\mathbb{F}_{9}$. We count using the inclusion-exclusion principle:

$$
x=\frac{3^{12}-3^{6}-3^{4}+3^{2}}{12}=\frac{530,640}{12}=44,220
$$

(OF COURSE you didn't need to like, literally, calculate the actual number.)

