Galois Theory, Progress Test 1

February 25, 2020

Please find below a brief report on Progress Test 1.
The test was taken by 30 students. The average final mark was 10 out of 20 . Only 12 students received a final mark >10. Very few students provided precise and complete answers. No marks were assigned to answers without explanations.

Question 1 This question had an average of 6 out of 10 . However, there were quite a few answers with very low marks: 10 students received a mark <5. None of the students managed to get the full 10 marks.
(a) This part was OK on average, although many students provided a (not very precise) argument based on real analysis instead of algebra. A few students seem to believe that if p and q are two coprime integers and $q \mid p$ then $p / q= \pm 1$.
(b) This part was successfully tackled by most of the students. Marks were assigned as follows: $1 / 3$ to find out that 1 is a root of $\bar{f}, 1 / 3$ to show that $\bar{f}(x)=(x+1) \cdot \bar{g}(x)$ where $\bar{g}(x)=x^{3}+x^{2}+1$, and $1 / 3$ to show that \bar{g} is irreducible over \mathbb{F}_{2}. A couple of students made miscalculations when dividing \bar{f} by $x+1$. Some students did not explain why \bar{g} is irreducible over \mathbb{F}_{2}, others provided an incomplete explanation of this fact.
(c) Many missing or incomplete answers here. Only 2 students gave an entirely correct answer to this part and explained that, if f factors as $f=g_{1} \cdot g_{2}$ in $\mathbb{Q}[x]$, then by the Gauss Lemma we may assume that $g_{1}, g_{2} \in \mathbb{Z}[x]$. A student believes that the fact that f has no rational roots implies the irreducibility of f over \mathbb{Q}.

Question 2 This question had an average of 4 out of 10 . There were lots of answers with very low marks: 15 students received a mark <3. Only 3 students got the full 10 marks.
(a) A worrying number of wrong answers here. Quite a few students believe that, since the roots of $x^{5}-1$ are the $5^{\text {th }}$ roots of unity, $[K: \mathbb{Q}]=5$. Most of the students provided an incomplete argument to show that $[K: \mathbb{Q}]=4$. For instance, many students did not mention that the splitting field of $h(x)=x^{4}+x^{3}+x^{2}+x+1$ is $\mathbb{Q}(\xi)$, nor that this field is a degree 4 extension of \mathbb{Q} since h is the minimal polynomial of ξ over \mathbb{Q}.
(b) Many incomplete answers here. Marks were assigned as follows: $2 / 4$ to find the required polynomial $g, 1 / 4$ to solve the quadratic equation and observe that $\alpha>0$, $1 / 4$ to find the value of $\cos \frac{2 \pi i}{5}$. Many students did not understand they needed to use that $h(\xi)=0$ to find the polynomial g, some of them made some miscalculations and found the wrong one. Some students did not notice that $\alpha>0$. A student seems to believe that $\exp \left(\frac{2 \pi i}{5}\right)=\sin \frac{2 \pi i}{5}+i \cos \frac{2 \pi i}{5}$.
(c) Many incomplete or wrong answers here. Marks were assigned as follows: $2 / 4$ to prove that $G \simeq C_{4}, 1 / 4$ to establish that $\mathbb{Q} \subset K$ has only a nontrivial intermediate field F, and $1 / 4$ to say what F is. A worrying number of students concluded that G is isomorphic to the group D_{10}, some students established that $G \simeq V_{4}$. Many students provided incomplete arguments to show that $G \simeq C_{4}$. However, most of the students who understood that $G \simeq C_{4}$ provided a correct description of the fields $\mathbb{Q} \subset F \subset K$.

