M3P11 (and M4P11, M5P11) Galois Theory, Worksheet 2

Alessio Corti

26th January 2020

Q 1. In this question, if $\alpha \in \mathbb{R}_{>0}$ and $n \in \mathbb{Z}_{\geq 1}$ then by $\alpha^{1 / n}$ or $\sqrt[n]{\alpha}$ I mean the unique positive real number β with $\beta^{n}=\alpha$. (This removes ambiguities about a general complex number having n complex roots in this question).
(i) Set $\gamma=(1+\sqrt{3})^{1 / 3}$. Prove that γ is algebraiq ${ }^{1}$. What is its degree over \mathbb{Q} ? What is its degree over $\mathbb{Q}(\sqrt{3})$?
(ii) Set $\delta=(10+6 \sqrt{3})^{1 / 3}$. Prove that δ is algebraic. What is its degree over \mathbb{Q} ? What is its degree over $\mathbb{Q}(\sqrt{2})$?

Q 2. In this question we'll find an explicit complex number z such that $\bar{z} \notin \mathbb{Q}(z)$ (by $\bar{z} \mathrm{I}$ mean the complex conjugate of z.)
(a) Set $\omega=e^{2 \pi i / 3}$, so $\omega^{3}=1$, and say $\alpha=2^{1 / 3} \in \mathbb{R}$ the real cube root of 2 . Set $z=\omega \alpha$. What is $[\mathbb{Q}(z): \mathbb{Q}] ?[$ Hint: minimal polynomial $]$.
(b) What is $[\mathbb{Q}(\omega): \mathbb{Q}]$?
(c) Let's assume temporarily that $\bar{z} \in \mathbb{Q}(z)$. Show that this implies $\omega \in \mathbb{Q}(z)$. Why does this contradict the tower law? Deduce $\bar{z} \notin \mathbb{Q}(z)$.
(d) Let's write $z=x+i y$. Prove that none of x, i or y are in $\mathbb{Q}(z)$.

Q 3. The purpose of this question is to make the proof of the Gauss' Lemma more digestible.
(a) Prove that if R is a commutative ring with 1 , and $x \in R$ then $0 x=0$.
(b) Prove that if K is a field and $a, b \in K$ are both non-zero, then $a b \neq 0$.
(c) If K is a field and $f=\sum_{i=0}^{d} a_{i} x^{i} \in K[x]$ is a non-zero polynomial, then (by choosing d sensibly) we may assume $a_{d} \neq 0$; we call $a_{d} x^{d}$ the leading term of f, and d the degree of f, and we write $d=\operatorname{deg}(f)$. Prove that if $f, g \in K[x]$ are non-zero, then $f g$ is also non-zero, and $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.
(d) Prove that if $f, g, h \in K[x]$ and $h \neq 0$ and $f h=g h$, then $f=g$ (the cancellation property for polynomial rings).
[Some of you will know that $f, g \neq 0 \Longrightarrow f g \neq 0$ is the assertion that $K[x]$ is an integral domain. Note that we used in class the fact that $\mathbb{F}_{p}[X]$ is an integral domain in the proof of the Gauss Lemma.]

[^0]Q 4. Factor the following polynomials in $\mathbb{Q}[x]$ into irreducible ones, giving proofs that your factors really are irreducible.
(i) $x^{3}-8$;
(ii) $x^{1000}-6$;
(iii) $x^{4}+4$;
(iv) $2 x^{3}+5 x^{2}+5 x+3$;
(v) $x^{5}+6 x^{2}-9 x+12$;
(vi) $x^{73}-1$;
(vii) $x^{73}+1$;
(viii) $x^{12}-1$.

Q 5. Prove that if $\alpha=2^{1 / 10}$ then $\mathbb{Q}(\alpha)$ has a basis $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{9}\right\}$.
Q 6. Let A denote the set of complex numbers that are algebraic (over \mathbb{Q}).
(i) Prove that A is a field.
(ii) Prove that $[A: \mathbb{Q}]=\infty$. [Hint: you can use Eisenstein to construct irreducible polynomials of large degree.]
(iii) Prove that A is a countable set.
(iv) Prove that $[\mathbb{C}: A]=\infty$.

Q 7. The Eisenstein criterion is not a brilliant way to decide if a polynomial $f(x) \in \mathbb{Z}[x]$ is irreducible. A much better strategy is to choose a prime p and show that the reduction of f modulo p is irreducible in $\mathbb{F}_{p}[x]$.

Make a list of all irreducible polynomials of degree ≤ 3 in $\mathbb{F}_{2}[x], \mathbb{F}_{3}[x]$, and $\mathbb{F}_{5}[x]$. (This is most definitely NOT a stupid thing to do.)

Q $8(\dagger)$. (a) Suppose that $a, b \in K$ are such that a is a square in $K(\sqrt{b}) \cdot{ }^{2}$ Prove that either a or $a b$ is a square in K.
(b) Let $a, b \in K$ and suppose that b is NOT a square in K; let $L=K(\beta)$ with $\beta^{2}=b$. Prove that: If one of $a+\beta, a-\beta$ is a square in L, then so is the other, and deduce that $c=a^{2}-b$ is a square in K.
(c) Let $a, b \in K$ and set $c=a^{2}-b$; suppose that none of b, c, or $b c$ is a square in K. If L is a splitting field of the polynomial:

$$
\left(x^{2}-a\right)^{2}-b \in K[x]
$$

prove that $[L: K]=8$.
[Hint: use Part (a) and Part (b) repeatedly.]
Q $9(\dagger)$. Suppose that $\operatorname{char}(K) \neq 2$, and let $K \subset L$ be a field extension of degree 4. Prove that the following two conditions are equivalent:

[^1](i) There exists a (nontrivial) intermediate field $K \subset E \subset L$;
(ii) $L=K(\alpha)$ for some $\alpha \in L$ having minimal polynomial over K of the form:
$$
f=x^{4}+a x^{2}+b \in K[x] .
$$

Q 10. Say F is the splitting field of $x^{3}-11$ over \mathbb{Q}. Figure out the Galois group $\operatorname{Gal}(F / \mathbb{Q})$. List all the subfields of F, all the subgroups of the Galois group, and draw a picture of the Galois correspondence.

Q 11. Say $E=\mathbb{Q}$ and let F be the splitting field of $x^{4}-p$, where p is a prime number. What is $[F: E]$? What is $\operatorname{Gal}(F / E)$? [Hint: you can just go ahead and do the question, but you may find Question 8 helpful.]

[^0]: ${ }^{1}$ By definition a complex number $z \in \mathbb{C}$ is algebraic if it is the root of a polynomial with coefficients in \mathbb{Q}.

[^1]: ${ }^{2}$ In general if K is a field we say that $a \in K$ is a square iff the polynomial $X^{2}-a \in K[X]$ splits into two linear factors, or, equivalently, there exists $\alpha \in K$ such that $\alpha^{2}=a$.

