M3P11 (and M4P11, M5P11) Galois Theory, Worksheet 1

Alessio Corti

10th January 2020

Q 1. This question is designed to get you up to speed with arithmetic in $\mathbb{Q}[x]$.
(a) Find the quotient and remainder when $x^{5}+x+1$ is divided by $x^{2}+1$.
(b) Find the remainder when $x^{2019}+32 x^{53}+8$ is divided by $x-1$.
(c) Find polynomials $s(x)$ and $t(x)$ such that

$$
\left(2 x^{3}+2 x^{2}+3 x+2\right) s(x)+\left(x^{2}+1\right) t(x)=1 .
$$

[Bonus question: how did I know for sure that these polynomials were coprime?]
(d) Find a hcf for $x^{4}+4$ and $x^{3}-2 x+4$. Express it as $a(x)\left(x^{4}+4\right)+b(x)\left(x^{3}-2 x+4\right)$.
(e) Find polynomials $\lambda(x)$ and $\mu(x)$ such that $(1+x) \lambda(x)+\left(x^{3}-2\right) \mu(x)=1$.

Q 2. Write $\xi=\sqrt[3]{2}$. This question is about understanding the field operations in $\mathbb{Q}(\xi)$ explicitly.
(a) Find rational numbers a, b and c such that $a+b \xi+c \xi^{2}=1 /(1+\xi)$.
[Hint: use Part (e) of the previous question.]
(b) Fix rational numbers A, B. Find rational numbers a, b and c (depending on A, B) such that $a+b \xi+c \xi^{2}=1 /\left(A+B \xi+\xi^{2}\right)$.

Q 3. Prove that if $f, g \in K[x]$ and at least one is non-zero, and if s, t are both hcf's of f and g, then $s=\lambda t$ for some $\lambda \in K^{\times}$.

Q 4. (a) We know that whether or not a polynomial is irreducible depends on which field it's considered as being over: for example $x^{2}+1$ is irreducible in $\mathbb{Q}[x]$ but not in $\mathbb{C}[x]$. But show that the notion of divisibility does not depend on such issues. More precisely show that if $K \subseteq L$ are fields, if $f, g \in K[x]$, and if $f \mid g$ in $L[x]$ then $f \mid g$ in $K[x]$.
(b) Is it true that if $f, g \in \mathbb{Z}[x]$ and $f \mid g$ in $\mathbb{Q}[x]$ then $f \mid g$ in $\mathbb{Z}[x]$? [Hint: No.] Is it true under the extra assumption that f is monic? [Hint: Yes.]

Q 5. (a) Prove that if $n \in \mathbb{Z}$ and $\sqrt{n} \notin \mathbb{Z}$ then $\sqrt{n} \notin \mathbb{Q}$.
(b) Prove that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$. What is the minimum polynomial of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2})$?
(c) Use the Tower Law to prove that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4$. Write down a basis for the \mathbb{Q}-vector space $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Q 6. (a) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
[Hint: the smallest subfield of the complex numbers containing \mathbb{Q} and $\sqrt{2}+\sqrt{3}$ must contain loads of other things too: write some of them down.]
(b) Deduce that $x^{4}-10 x^{2}+1$ is irreducible over \mathbb{Q}.

Q 7. Is $\sqrt{10} \in \mathbb{Q}(\sqrt{6}, \sqrt{15})$?
Q 8. Prove that: If $K \subseteq L \subseteq E$ are fields, and one of $[L: K]$ or $[E: L]$ is infinite, then $[E: K]$ is infinite.

Remark: for those unfamiliar with infinite-dimensional vector spaces, a vector space V over a field is infinite-dimensional iff it has no finite spanning set, iff for every $n \geq 1$ there exist n elements $v_{1}, v_{2}, \ldots, v_{n}$ which are linearly independent.
Q 9. (a) Prove that if $K \subseteq L$ is a finite extension of fields and V / L is a finite-dimensional vector space then $\operatorname{dim}_{K}(V)=[L: K] \operatorname{dim}_{L}(V)$.
(b) Prove that if $K \subseteq L \subseteq E$ and $[E: K]=[L: K]$ is finite, then $L=E$.

Q 10. Let K be a field with $\operatorname{char}(K) \neq 3$ and such that $f(x)=x^{3}-3 x+1 \in K[x]$ is irreducible. Let $L=K(\alpha)$ where α is a root of $f(x)$. Show that f splits completely over L.
[Hint: Factor f over $L[x]$ as $(x-\alpha) g(x)$. Now solve for $g(x)=0$ in L observing that $12-3 \alpha^{2}=\left(-4+\alpha+2 \alpha^{2}\right)^{2}$.]
Q $11(\dagger)$. Let K be a field of characteristic 0 containing an element $\omega \in K$ with

$$
\omega^{2}+\omega+1=0 .
$$

(For example you can take $K=\mathbb{Q}(\omega)$ where $\omega=\exp \frac{2 \pi i}{3}$.) In this question we carve a trick-free path to the formula for the solutions of the equation

$$
y^{3}+3 p x+2 q=0
$$

(where $p, q \in K$) that only involves taking radicals (i.e., $\sqrt[n]{ }$ of something).
We assume that $K \subset L$ is the splitting field of the polynomial of Equation (\dagger) and we denote by $\alpha_{1}, \alpha_{2}, \alpha_{3} \in L$ the three roots. (You can already prove that such a field extension exists but I don't care that you do this here.)

We know that the Galois group G permutes the three roots.
(a) Write the action of the cyclic permutation $\sigma=(123)$ on the elements

$$
u=\alpha_{1}+\omega \alpha_{2}+\omega^{2} \alpha_{3}, \quad v=\alpha_{1}+\omega^{2} \alpha_{2}+\omega \alpha_{3} .
$$

and conclude that $\sigma(u)=\omega u$ and $\sigma(v)=\omega^{2} v$ 円
(b) Find a formula expressing the three roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$ in terms of u and v.
[Hint: $\alpha_{1}+\alpha_{2}+\alpha_{3}=0$.]
(c) Consider the transposition $\tau=(23)$: show that $\tau(u)=v$ and $\tau(v)=u$, and hence argue that $u^{3}+v^{3}$ and $u^{3} v^{3}$ are fixed by all of \mathfrak{S}_{3} - and hence by all of G, irrespective of what G is. In other words, it follows from the Galois Correspondence that $u^{3}+v^{3}$ and $u^{3} v^{3} \in K$: show that this is indeed the case by finding explicit formulas for these quantities. Thus write down an explicit quadratic polynomial in $K[X]$ of which u^{3}, v^{3} are the two roots. Solve the quadratic equation, and combine with (b) to derive the cubic formula.

[^0]
[^0]: ${ }^{1}$ Whether or not there is an element of G that acts as σ on the three roots is not relevant at this point. Such an element may or may not exist.

