Galois Theory, Progress Test 2

March 22, 2019

Please find below a brief report on Progress Test 2.
(a) This part was correctly tackled by most of the students. Marks were assigned as follows: $1 / 5$ for proving that f is irreducible, $1 / 5$ for computing $(\alpha+1)^{3}, 2 / 5$ for finding the other two roots of f and $1 / 5$ for explaining that f splits over F. The most common argument to prove the irreducibility of f was to show that f has no roots in \mathbb{F}_{3} (however, most of the students did not explain that such argument can be used since f is a cubic polynomial). Some students did not manage to determine the third root of f (besides α and $\alpha+1$), or got it wrong; none used the properties of the Frobenius to find out that the third root of F is $\alpha-1$ (all the students who got this right did it by guessing and checking).
(b) This part was OK on average. Marks were assigned as follows: $3 / 5$ for computing β^{2} and β^{3} in the basis $\left\{1, \alpha, \alpha^{2}\right\}$, and $2 / 5$ to find the minimal polynomial of β over \mathbb{F}_{3}. A couple of students made some miscalculations when computing $\beta^{3} . \sim 1 / 3$ of the students did not compute the minimal polynomial of β over \mathbb{F}_{3}, or got it wrong.
(c) Only 6 students gave an entirely correct answer to this part. Marks were assigned as follows: $1 / 5$ to prove that g is irreducible over $\mathbb{F}_{3}, 2 / 5$ to determine the possible values of $\varphi(\alpha)$ in the basis $\left\{1, \beta, \beta^{2}\right\}$, and $2 / 5$ to explain there are only three possible field homomorphisms $\varphi: F \rightarrow F^{\star}$. Almost everyone proved that the polynomial g is irreducible over F_{3} (by checking it has no roots in \mathbb{F}_{3}). A worrying number of students wrote that the possible images of α through φ are the roots of g. Only $\sim 1 / 3$ of the students understood that the number of field homomorphisms $\varphi: F \rightarrow F^{\star}$ equals the number of roots of f in F^{\star}.
(d) Only 3 students gave an entirely correct answer to this part. Marks were assigned as follows: $2 / 5$ to compute the degree of the minimal polynomial h of γ over $\mathbb{F}_{3}, 1 / 5$ to explain that this polynomial splits over F, and $2 / 5$ to find the number of monic irreducible cubic polynomials in $\mathbb{F}_{3}[x]$. The most recurrent argument to show that h is cubic was to apply the tower law to the chain of field extensions $\mathbb{F}_{3} \subset \mathbb{F}_{3}(\gamma) \subset F$. $\sim 1 / 2$ of the students did not seem to remember that finite extensions of finite fields are normal. Almost all students who found out that there are precisely 8 monic irreducible cubic polynomials in $\mathbb{F}_{3}[x]$ got the answer by direct computation.

