Nairobi Examples

AC \& LH

$15^{\text {th }}$ August 2018

1 Find $\int \frac{d u}{5+4 \sin u}$ by substituting $u=\tan \frac{u}{2}$. Do it again by setting

$$
\sin u=\frac{e^{\mathrm{i} u}-e^{-\mathrm{i} u}}{2 \mathrm{i}}
$$

and reconcile the results you get.

2 Let $\Phi(x) \in \mathbb{C}(x)$ be a rational function.
(1) Show that there exist: a polynomial $P(x) \in \mathbb{C}[x]$, constants $A_{i}, a_{i} \in \mathbb{C}$ and integers $m_{i} \geq 1$ such that

$$
\Phi(x)=P(x)+\sum_{i} \frac{A_{i}}{\left(x-a_{i}\right)^{m_{i}}}
$$

(2) Use (1) to evaluate $\int_{x_{0}}^{x} \Phi(x)$. Note that it makes sense to either:
(a) consider $\Phi: I \rightarrow \mathbb{C}$ a function of a real variable in some interval $I=$ $\left(c_{1}, c_{2}\right) \subset \mathbb{R}$, or
(b) $\Phi: \mathbb{C} \backslash\left\{a_{i}\right\} \rightarrow \mathbb{C}$ a function of a complex variable.

In the latter case the integral depends on the choice of a path in $\mathbb{C} \backslash\left\{a_{i}\right\}$ from x_{0} to x and it is defined up to a constant

$$
2 \pi \mathrm{i} \sum_{m_{i}=1} k_{i} A_{i} \quad\left(k_{i} \in \mathbb{Z}\right)
$$

(3) Evaluate $\int \frac{x+1}{x^{2}+1}$ by the method in (2) above. Reconcile your result with the formula:

$$
\int \frac{x+1}{x^{2}+1} d x=\frac{1}{2} \log \left|x^{2}+1\right|+\arctan x+C \quad(x \in \mathbb{R}) .
$$

3 Convince yourself that

$$
\mathrm{i} \pi+2 \mathrm{i} \tan ^{-1} x=\log \frac{x-i}{x+i}
$$

4 Parametrize the conic $C=\left(x^{2}+y^{2}=5\right)$ by considering a variable line through $(2,1)$ and hence find all $x, y \in \mathbb{Q}$ such that $x^{2}+y^{2}=5$.

5 Find the singular points of the following curves in $\mathbb{P}^{2}(\mathbb{C})$:
(a)

$$
x z^{2}-y^{3}+x y^{2}=0 ;
$$

(b)

$$
(x+y+z)^{3}-27 x y z=0
$$

(c)

$$
x^{2} y^{2}+36 x z^{3}+24 y z^{3}+108 z^{4}=0 .
$$

6 For what values of t has the curve:

$$
x^{3}+y^{3}+z^{3}+t(x+y+z)^{3}=0
$$

one or more singular points? Locate the singular points for each such value of t.

7 Find the intersections of the following pairs of curves in \mathbb{P}^{2} :
(a)

$$
\begin{aligned}
x\left(y^{2}-x z\right)^{2}-y^{5} & =0 \\
y^{4}+y^{3} z-x^{2} z^{2} & =0
\end{aligned}
$$

(b)

$$
\begin{aligned}
x^{3}-y^{3}-2 x y z & =0 \\
2 x^{3}-4 x^{2} y-3 x y^{2}-y^{3}-2 x^{3} z & =0
\end{aligned}
$$

(c)

$$
\begin{array}{r}
x^{4}+y^{4}-y^{2} z^{2}=0 \\
x^{4}+y^{4}-2 y^{3} z-2 x^{2} y z-x y^{2} z+y^{2} z^{2}=0
\end{array}
$$

8 Determine for what values $a, b \in \mathbb{C}$ the curve $\left(y^{2}=x^{3}+a x+b\right) \subset \mathbb{C}^{2}$ is nonsingular.

9 Show that an irreducible plane cubic with an ordinary node has three inflection points and that they are collinear.

10 Find a rational parametrization of the curves in $\mathbb{P}^{2}(\mathbb{C})$:
(a)

$$
\left(x^{2}+y^{2}\right)^{2}=z^{2}\left(x^{2}-y^{2}\right)
$$

(b)

$$
2 x^{4}-3 x^{2} y z+y^{2} z^{2}-2 y^{3} z+y^{4}=0
$$

11 Suppose given a rational parametrization of a plane curve:

$$
\begin{aligned}
& x(t)=a t^{2}+b t+c \\
& y(t)=p t^{2}+q t+r
\end{aligned}
$$

Find a plane algebraic curve $f(x, y)=0$ such that $f(x(t), y(t))=0$.

12 Prove that for $u, v \in \mathbb{Z}, u^{2}+v^{2}$ and $u^{2}-v^{2}$ are both squares implies $v=0$.

13 (1) Consider a polynomial differential operator $P=\sum_{k} P_{k}(D) t^{k} \in$ $\mathbb{Z}[D, t]$ (where $D=t \frac{d}{d t}$). Show that a power series

$$
f=\sum_{n} c_{n} t^{n}
$$

is a solution of the ordinary differential equation $P \cdot f=0$ if and only if its coefficients satisfy the linear recursion relation

$$
\forall j \geq 0: \sum_{k \leq j} P_{k}(j-k) c_{j-k}=0
$$

(2) Show that for all integers $k \geq 0$ the power series

$$
\widehat{I}_{k}(t)=\sum_{n=0}^{\infty} \frac{((8 k+4) n)!n!}{(2 n)!((2 k+1) n)!^{2}((4 k+1) n)!} t^{n}
$$

is a solution of $H_{k} \cdot \widehat{I}_{k}=0$ where $H_{k}=P_{k, 0}(D)+t P_{k, 1}(D)$, and

$$
\begin{aligned}
P_{k, 0}(D)=-\prod_{i=0}^{2 k}((2 k+1) D-i) \prod_{i=0}^{4 k}((4 k+1) D-i) \quad \text { and } \\
P_{k, 1}(D)=4^{2 k+1}(2 k+1) \prod_{i \in \mathcal{I}_{k}}((8 k+4)(D+1)-i),
\end{aligned}
$$

where $\mathcal{I}_{k}=\{1, \ldots 8 k+3\} \backslash\{4 k+2\} \cup\{2 j\}_{j \in\{1, \ldots 2 k\}}$. Show the operator H_{k} is singular at $0, \infty$ and at

$$
t_{k}=\frac{(4 k+1)^{4 k+1}}{4^{8 k+3}(2 k+1)^{2 k+1}}
$$

14 For the Laurent polynomial

$$
f(x, y)=x+y+\frac{1}{x y}
$$

compute the power series expansion at $t=0$ of the integral:

$$
\pi_{f}(t)=\left(\frac{1}{2 \pi \mathrm{i}}\right)^{2} \oint \frac{1}{1-t f(x, y)} \frac{d x}{x} \frac{d y}{y}
$$

where you are integrating over the cycle $|x|=|y|=1$. Show that $\pi_{f}(t)$ is a solution of the differential equation

$$
\left[D^{2}-27 t^{3}(D+1)(D+2)\right] \cdot \pi_{f}(t)=0
$$

References

[Cle03] C. Herbert Clemens. A scrapbook of complex curve theory, volume 55 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2003.
[Con] Brian Conrad. Impossibility theorems for elementary integration. http://math.stanford.edu/ conrad/papers/elemint.pdf.
[LW05] Achan Lin and Marshall Walker. Hermite interpolation of space curves using the symmetric algebra. Comput. Aided Geom. Design, 22(4):299-319, 2005.
[Rei88] Miles Reid. Undergraduate algebraic geometry, volume 12 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1988.

