
Algebraic Topology M3P21 2015
Homework 2

AC
Imperial College London
a.corti@imperial.ac.uk

2nd February 2015

N.B.

Turn in 5 questions by Monday, 16 February, at 12:00 either in
class or in my pigeon-hole in the mail-room on the 6th floor.

(1) Show that for a space X the following are equivalent:

(i) Every map S1 → X is homotopic to a constant map, with image a
point in X;

(ii) Every map S1 → X extends to a map D2 → X;

(iii) π1(X, x0) = (0) for all x0 ∈ X

Deduce that a space X is simply-connected if and only if all maps S1 → X are
homotopic. [N.B. In this question “homotopic” means “homotopic without
regard to basepoints.”]

(2) This question is about the fundamental group of the Klein bottle K.

(a) Hatcher (page 51) shows two different ways of computing π1(K). The
two presentations he obtains areG1 = 〈a, b|aba−1b〉 andG2 = 〈x, y|x2y2〉.
Write a purely algebraic proof that G1 and G2 are isomorphic. (Hint:
By the definition of “group presentation”, Gi

∼= F/Ni, where F = 〈u, v〉
is free and N1, N2 are certain normal subgroups. Hence it suffices to
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find group homomorphisms φ, ψ : F → F such that φ ◦ ψ = ψ ◦ φ = id
and φ(N1) = N2.)

(b) In the first homework we saw that K can also be written as M ∪f M ,
where M is a Möbius strip and f : ∂M → ∂M is a homeomorphism.
Apply van Kampen to this decomposition to compute π1(K) for the
third time. (Hint: [∂M ] is an element of π1(M). Which one?)

(3) Show very carefully that S1 is a retract of S1∨S1, but not a deformation
retract.

Construct infinitely many non-homotopic retractions S1 ∨ S1 → S1.

(4) Van Kampen’s theorem talks about decompositions X = U ∪V , where
U, V are open and path-connected, and U ∩V 6= ∅ is path-connected as well.
Show that the assumption that both U and V are open is necessary for the
theorem to hold.

(5) Suppose that a space Y is obtained from a path-connected subspace
X by attaching n-cells for a fixed n ≥ 3. Show that the inclusion X ↪→ Y
induces an isomorphism on π1. Apply this to show that the complement of
a discrete subspace of Rn is simply-connected if n ≥ 3. [N.B. a subspace
Z ⊂ X of a topological space X is discrete if the topology on Z induced by
the topology of X is the discrete topology: in other words, ∀ z ∈ Z there is
U ⊂ X open, z ∈ U , U ∩ Z = {z}.]

(6) Recall the usual picture of the Klein bottle K as a subspace X ⊂ R3

with a circle of self-intersection (so in fact there is a continuous map K → X
identifiying two circles). If one wanted a model that could actually function
as a bottle, one would delete the small open disk bounded by the circle of
self-intersection, producing a subspace Y ⊂ K. Show that π1(X) ∼= Z ∗ Z
and that

π1(Y ) =
〈
a, b, c | aba−1b−1cbεc−1

〉
for ε = ±1. (Don’t worry about nailing down ε.)

The space Y can be obtained from a disk with two holes by identifying
the three boundary circles. Show that the other way yields a space Z with
π1(Z) not isomorphic to π1(Z). [Hint. In fact, the abelianizations of these
groups are not isomorphic.]
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(7) Construct a simply-connected covering space of the space X ⊂ R3 that
is the union of a sphere and a diameter. Do the same when X is the union
of a sphere and a circle intersecting it in two points.

(8) Draw all the connected 2-sheeted and 3-sheeted covering spaces of S1∨
S1, up to isomorphism of covering spaces without basepoints.

(9) Find all the connected covering spaces of P2(R) ∨ P2(R).

(10) For a path-connected, locally path-connected, and semilocally simply-

connected space X, call a path-connected covering space X̃ → X abelian if
it is normal and has abelian deck transformation group. Show that X has an
abelian covering space that is a covering space of every other abelian covering
space of X.

Draw a picture of this covering space for X = S1 ∨ S1. (No proof is
required, just a picture.) [Hint: paint S1 ∨ S1 on the torus.]
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