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Chapter 1

Introduction

1.1 Recommended Reading

- Allen Hatcher, Algebraic Topology. Cambridge University Press.
Available at, http://www.math.cornell.edu/~hatcher/AT/ATpage.html This course will (hope-
fully) cover the content of chapters 1 and 2.
- Singer and Thorpe, Lecture notes on Elementary Topology and Geometry.

1.2 A Course Overview

This course will define algebraic invariants of topological spaces. This will be done by defining
functors;

F : Top→ Gp

Where Top is the catergory of Topological Spaces and Gp is the category of Groups, most of the
time these groups will be abelian, Ab.

It is intuitive to think of a category as a ‘thing’ with objects and morphisms. For example, in
Top the objects are topological spaces and the morphisms are the continuous maps. Similarly in
Gp, the objects are groups and the morphisms are group homomorphisms.

Moreover, funtors can be thought of as a thing that sends objects and morphisms to objects
and morphisms in a consistent way.

It is useful to ask the following questions:
1) What kinds of topological spaces are we interested in? In this course we will consider CW
complexes.
2)What sort of F? We will define two functors, π1, H?.

1.3 Background from Point-Set Topology

There following is a useful proposition:
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Proposition 1. If X is a T2 (Hausdorff) topological space and K ⊂ X is a compact subset then
K is closed.

1.4 The Quotient Topology

Definition 1. Let X be a topological space, R ⊂ X ×X be a (set theoretic) equivalence relation.
Furthermore let

π : X → X
/
R = Y

be the natural map. Then define the quotient topology on Y to be the topology such that

U ⊂ Y is open ⇐⇒ π−1(U) is open in X

The quotient topology is the ’biggest’ topology that makes π continuous. It makes sense to
consider the ’biggest’ topology since the trivial topology is the ’smallest’ topology.

1.4.1 Universal Property Characterising the Quotient Topology

If f : X → Z is continuous and constant on classes then there exists a unique map g : Y → Z
such that g ◦ π = f is continuous. The existence and uniqueness of such a map follows results of
set theory.

This result can also be considered in terms of the following diagram, where the result is that
the diagram commutes.

X

Y

Z

f

g = π ◦ f

π

We now consider an example of non Hausdorff quotien.t
Example 1. Let X = R× {0, 1}, (a).
Define the equivalence classes of the relation R to be the sets,

{(t, 0), (t, 1) | t 6= 0}, {(0, 0)}, {(0, 1)}

Then X
/
R , is a line with the origin ’doubled up’ and can be graphically represented as in the

figure above (b). A small neighbourhood of (0, 0) does not include (0, 1) since the preimage must
be open. Moreover any neighbourhoods of (0, 0) and (0, 1) must always intersect. Therefore
X
/
R is not Hausdorff!

This case is rather pathological however we will only consider T2 spaces in this course. However
it is not always easy to ensure that a quotient space is T2.
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(a) X (b) X
/
R

A useful observation is the following. Suppose that Y = X
/
R is T2 then it is clear that 1-element

sets {y} ⊂ Y are closed. Therefore π−1(y) = [x] is also closed in X. In other words if Y is T2

then the classes of R must be closed in X.
Theorem 1. Let π : X → Y be continuous, surjective TFAE:

1. π is a quotient map for R such that the classes are the fibres of π. Equivalently, Y has a
quotient topology.

2. U ⊂ Y open ⇐⇒ π−1(U) is open.

3. If for all topological spaces, Z, f : Y → Z is continuous ⇐⇒ f ◦ π is continuous.
Theorem 2. Let X,Y be topological spaces, π : X → Y be a surjective, continuous map. Further
suppose X is compact, Y is Hausdorff. Then π is a quotient map.
(Informally, π bijective =⇒ π homeomorphism)

Proof. We want to prove that;

π−1(U) ⊂ X open =⇒ U ⊂ Y open

To show this let;
K = X\π−1(U)

This is closed, since π−1 is assumed to be open. Since K is closed it is also compact (a closed
subset of a compact set). This implies that π(K) ⊂ Y is compact as π is continuous. By the
assumption that Y is T2 it follows that π(K) is closed. And hence U = Y \π(K) is open.

There is a slight subtly here. A map f : X → Y is said to be open if it maps open sets to open
sets, however π may not necessarily by open. Consider the following example,
Example 2. Let S1=the circle ={z ∈ C||z| = 1}. Let f : [0, 1] → S1 be the map such that
f(t) = exp(2πit).

Then this is a quotient map by the above theorem, [0, 1] compact (by Heine Borel), S1 is Haus-
dorff, and f is continuous and surjective. Therefore f is a quotient map, however f is not open!

1.5 Construction of some Topological Spaces

We construct some standard topological spaces while introducing some stand methods for con-
structing topological spaces. Consider the following constructions;

(1) Let X be a topological space, A ⊂ X, and f : A→ Y be a quotient map. We let

X ∪f Y = X
/
R
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Where R is the relation that says that, for all x1, x2 ∈ A, x1 ∼ x2 if and only if f(x1) = f(x2).

When Y = {pt} then this is called collapsing, often denoted (rather confusingly) by X
/
A .

(2) Assuming the same set up as above, but let f : A → Y be any continuous map, (f is NOT
surjective). Then;

X ∪f Y = X t Y
/
R

Where R is the equivalence relation generated by x ∼ f(x) for x ∈ A. We now consider a few
examples. Note ' is used to mean ’is homeomorphic to’.
Example 3. Let X = [0, 1], A = 0, 1 then X

/
A ' S1. This is an example of collapsing.

Proof.

[0, 1]

X
/
A S1

e2πit

φ

π

There is an induced continuous map π : X
/
A → S1 by the universal property of quotients. Then

φ is bijective, X
/
A is compact, S1 is T2 and so by theorem 2, φ is a homeomorphism.

This can also be taken as the definition of S1.
Example 4. Let S2 = {x ∈ R||x| = 1} be the two dimensional sphere, D2 = {y ∈ R2||y| ≤ 1} be
the two dimensional disc and ∂ = {y ∈ R2||y| = 1} = S1, that is ∂ is the boundary of D2. Then;

D2
/
∂ ' S2

Proof. Graphically the argument used is to cover the sphere with the two dimensional disc. In a
similar way to ’putting a hat on’, or ’putting a ball in a draw string bag’,this homeomorphism can
be seen graphically.
Formally we need to define a map f between the surfaces, such a function is ;

f(y) =

 (2y,
√

1− 4y2) if |y| ≤ 1
2

(

√
1−(1−2r)2y

|y| ,−2|y|+ 1) if |y| ≥ 1
2

It is useful to consider the following diagram;

D2

D2
/
∂ S2

f(y)

φ

π
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Figure 1.2: Sphere covered with the disc D2

The existence of φ : D
2
/
∂ → S2 follows from the universal property of quotients, the argument

then follows identically to as above.

Intuitively the inside of the disc maps onto the sphere minus the south pole, the boundary is
’identified’ with the south pole in the quotient.
Example 5. Let M be the Mobius strip [0, 1]2 ∪f [0, 1], A = {0} × [0, 1] t {1} × [0, 1]. Where
f : A→ [0, 1] is a continuous map such that;

f(0, t) = t, f(1, t) = 1− t

Intuitively, one pair of opposite edges of the square are ’identified’ with each other, however the
top left hand corner is send to the bottom right corner (red), and similarly the bottom left hand
corner is sent to the top right hand corner (blue).

(a) The effect of f on A (b) The Mobius Strip

Example 6. We now consider the real projective plane. We begin by defining the relation ∼, such
that x ∼ y ⇐⇒ ∃λ 6= 0 such that x = λy. The it follows that;

RP2 = R3\{0}
/
∼

However this is not the only descriptions of the real projective plane. Two others are;

• S2
/
∼ , where ∼ is the relation such that the equivalence classes are {(−x, x)}.

• D2 ∪f S1, A = ∂D2 = S1. Such that f : S1 → S1, f(z) = z2, z ∈ C, |z| = 1. That is the
antipodal points of the sphere are identified.
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We claim that tall of these characterisations are equivalent. In order to show this, we begin by
defining maps between D2, S2 and R3, that is;

D2 g−→ S2 h−→ R3\{0}

where g is the map that sends y 7→ (y,
√

1− |y|) where |y| ≤ 1, and h is the natural inclusion map.
It is almost imediate that these maps are continuous (by the universal property), and bijective
maps (by inspection). (The inverse of g is the map that sends x 7→ x

|x| . These maps also respect
the classes of the respective relations therefore;

D2 ∪f S1 [g]−→ S2
/
∼

[h]−−→ RP2

In order to show that;
S2
/
∼ ' RP

It is possible to prove the following equalities;

[r] ◦ [h] = idS2
/
∼

and
[h] ◦ [r] = idRP2

This implies that S2
/
∼ ' RP2.

However to prove that;
D2 ∪f S1 ' S2

/
∼

we use theorem 2. Therefore we need to show that S2
/
∼ is T2. A sketch proof of this is now

given.

Proof. Let x, y ∈ S2 have distinct images in S2
/
∼ ; this means that x 6= ±y in S2. We need

to construct disjoint neighbourhoods U of {x,−x}, and W of {y,−y} such that U = −U and
W = −W . Taking U = B(x, ε) uB(−x, ε), and U = B(y, ε) uB(−y, ε) for 0 < ε sufficiently small
will do (we used the notation B(x, ε) = {v | ||v−x|| < ε}). Observe that {x,−x}, {y,−y} ∈ S2

/
∼

we aim to construct disjoint neighbourhoods of these distinct points.

1.6 CW Complexes

A CW Complex is a space built inductively, that is X =
⋃n
k=0X

k.
Let X0 be a finite set then define;

Xk = qNka Dk
a ∪f Xk−1

Where, f = qafa : ∂Dk
a = Sk−1

a → Xk−1, Dk = {x ∈ Rk||x| ≤ 1} and ∂Dk the boundary of Dk.

Xk is known as the kth skeleton of X. Dk
a are called the k dimensional cells of the CW com-

plex.

All of the space we talk about in this course are homeomorphic (or homotopic) to CW com-
plexes. Moreover the invariants, (πq(x, x0), H0x) are computable on CW complexes.
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Example 7. Consider
RPn = Rn+1\{0}

/
∼

where the relation is defined as x ∼ y if and only if ∃λ ∈ R∗ such that x = λy. Moreover this is
equivalent to,

RPn = Sn
/
∼

where ∼ is the antipodal equivalence. However RPn can be considered as;

RPn = Dn ∪f RPn = Dn ∪f S
n/
∼

where ∼ is the antipodal equivalence, where f is the quotient map such that f : ∂Dn = sn−1 →
RPn.

In the last form it is clear that RPn is exhibited as CW complex.
Example 8. We now consider the n dimensional complex projective space CPn.

CPn = Cn+1\{0}
/
∼

where x ∼ λy, λ ∈ C∗.

CPn = S2n+1
/
∼

Where x ∼ λx when λ ∈ C, |λ| = 1.
(Exericise: Why is this a CW complex?)
Example 9. We consider a surface with attachments at the boundary. See figure 1.4, 1.5 and
1.6.

Figure 1.4: Constructing the Torus

1.6.1 The Euler Number of a CW complex

Definition 2. The Euler number of CW complex X is defined to be;

e(X) =

n∑
k=0

(−1)k#{k dimensional cells that are added in at the k level}

=

n∑
k=0

(−1)kNk
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Figure 1.5: Constructing the Klein Bottle

Figure 1.6: Constructing a Torus with two Holes

It is a fact that e(X) us another topological invariant of a space X. Moreover, e(X) is a homotopy
invariant of X.
We now consider the calculation of Euler Numbers when S2 is considered to be a CW complex.

Example 10. We give some examples of when S2 can be considered as a CW complex. Note in
all of these cases e(X) = 2, it is indeed true that this is true for an arbitrary cellular decomposition
of S2.
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Figure 1.7: e(X) = 4− 6 + 4 = 2

Figure 1.8: e(X) = 1− 0 + 1

Figure 1.9: e(X) = 2− 1 + 1
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Chapter 2

Homotopy

2.1 Path Homotopy

Definition 3. LetX be a topological space and let a, b ∈ X. A path from a to b inX is a continuous
map γ : I → X (where I := [0, 1]) with γ(0) = a and γ(1) = b. A loop in X based at a is a path
from a to a.
Definition 4. Let X be a topological space and α, β : I → X be two paths from a to b. A
homotopy from α to β is a continuous map F : I × I → X such that:

1. F (t, 0) = α(t) and F (t, 1) = β(t) ∀t ∈ I

2. F (0, s) = a and F (1, s) = b ∀s ∈ I

In other words a homotopy is a path of paths with endpoints the paths α and β. When two paths
α and β are related in this way by a homotopy F , they are said to be homotopic. The notation is
α ∼ β

Figure 2.1: Graphical Representation of Homotopy of Paths

Definition 5. Given two paths α, β : I → X such that α(1) = β(0), there is a composition or
product path α ◦ β that traverses first α and then β, defined by the formula:

α ◦ β(t) =

{
α(2s) 0 ≤ t ≤ 1/2

β(2s− 1) 1/2 ≤ t ≤ 1

Thus α and β are traversed twice as fast in order for α ◦ β to be traversed in unit time.
Theorem 3. α1 ∼ α2, β1 ∼ β2 =⇒ α1 ◦ β1 ∼ α2 ◦ β2
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Figure 2.2: Composition of Paths

Proof. Suppose; Is a homotopies from α1 to α2 and from β1 to β2 respectively.

Figure 2.3: Composition of Paths

Now consider the following homotopy, Then this is a homotopy form α1β1 to α2β2.

Then;

φ(t, s) =

{
F (2t, s) if 0 ≤ t ≤ 1/2

G(2t− 1, s) if 1/2 ≤ t ≤ 1

Proves the theorem.

2.1.1 A more general definition of Homotopy

We now formally state the definitions of homotopy, relative homotopy, homotopy equivalence and
what it means to say that two spaces are homotopy equivalent.
Definition 6. Let X,Y be topological spaces, let f, g : X → Y be continuous maps. f is said to
be homotopic to g, denoted f ∼ g, if and only if there exists a continuous function F : X×I → Y
such that;

F (x, 0) = f(x), F (x, 1) = g(x) ∀x ∈ X

F is called a homotopy from f to g.
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If A ⊂ X is a topological subspace and f |A = g|A then f ∼ g relative to A, often denoted
’rel A’, if and only if ∃ a continuous F : X × I → Y such that;

F (x, 0) = f(x), F (x, 1) = g(x) ∀x ∈ X

but also that F satisfies
F (x, t) = f(x) = g(x) ∀x ∈ A,∀t ∈ I

Path homotopy defined previously was an example of a relative homotopy.

Definition 7. f : X → Y is a homotopy equivalence if ∃g : Y → X s.t. g ◦ f ∼ idx, f ◦ g ∼
idY .(where ∼ denotes homotopy)
X,Y are said to be homotopy equivalent, denoted X ∼ Y if ∃f : X → Y which is a a homotopy
equivalence.

Definition 8. Let i : A ↪→ X be inclusion of a topological space.
A retraction from X to A is a continuous map r : X → A such that r ◦ i = idA.

A retraction r is a deformation retraction if i ◦ r ∼ idX rel A ( =⇒ r, i are homotopy equiv-
alent)

Example 11. Let
A = Sn ↪→ Rn+1

/
{0} = X

Then define
r(x) =

x

||x||
∀x ∈ X

is a retraction from X to A. Then compute r ◦ i;

r ◦ i(x) =
x

||x||
= i(x) = x, ∀x ∈ X

Since ||x|| = 1 for all x ∈ Sn. Moreover, r is also a deformation retraction. In order to show this
we need to define a homotopy such that i ◦ r ∼ idX . That is define, F : X × I → X such that

F (x, 0) =
x

||x||
and F (x, 1) = x, ∀x ∈ X

To do this define, for any x ∈ X,

F (x, t) = tx+ (1− t) x

||x||

Such a map is continuous and the start and end points agree with the definition of a homotopy.
More over if x ∈ A then x = ||x|| and so F (X, t) = X.

Figure 2.4: An example of a Deformation Retraction in R2
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Definition 9. A set X is called contractable if f ∼ {pt}.

Example 12. A convex set C ⊂ Rn is contractable.

Proof. let c0 ∈ C, consider i : {c0} ↪→ C. Then F (c, t) = tc + (1 − t)c0 ∈ C, by definition of a
convex set.

For x ∈ C, t ∈ I is a homotopy from r ≡ c0 to idC relative to {c0} = A.

Example 13. Letters of the alphabet - see Hatcher book.

2.2 The Fundamental Group

Definition 10. Let X be a topological space and a ∈ X then {loops based at a}
/
∼ is a group

called fundamental group π1 where:

1. e : I → X e(t) = a ∀t

2. if α : I → X is a loop a t a then α−1 : I → X is the loop α−1 = α(1− t)
Theorem 4. π1(X,x0) = {loops based at a}

/
∼ is a group

Proof. By the previous theorem on the composition of loops, it follows that the operation of com-
position defines an operation on π1(x1, x0). We prove this theorem by presenting graphically the
homotopies required to prove the theorem.

For associativity, (α.β).γ ∼ α.(β.γ).

For the identity element, let e : I → X be the constant loop, e(t) = x0 for all t ∈ I. We require
that e.α ∼ α, α.e ∼ α for all α.
Let α : I → X be a path from a to b, define ᾱ : I → X, ᾱ = α(1− t), be a path from b to a. Then
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the homotopy can be defined as;

Definition 11. Let X be a topological space, it is path connected if ∀x0, x1 ∈ X ∃ a path from x0

to x1

Figure 2.6: Path connectedness

Proposition 2. X path connected =⇒ X connected.

Proof. Suppose for a contradiction that X = U q V where U and V are open, non-empty sets.

Then pick x0 ∈ U , x1 ∈ V . Let α : I → X be a path from x0 to x1, which exists since X is
assumed to be path connected. However it is possible to express I as;

I = α−1U q α−1V

Which is a disjoint union since 0 ∈ α−1V , 1 ∈ α−1U , a contradiction because I = [0, 1] is
connected.

Figure 2.7: An illustration of the proof of proposition 2

Proposition 3. Suppose X is a path connected topological space. Let x0, x1 ∈ X then

π1(X,x0) ' π1(X,x1)

Proof. Let α : I → X be a path from x0 to x1.

π1(X,x1) 3 [γ]
φα7−−→ [α] · [γ] · [ᾱ] ∈ π1(X,x0)

It is easy to check that φα is well defined, φα is a group homomorphism and φᾱ = φ−1
α
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Figure 2.8: An illustration of the proof of proposition 3

2.3 Covering Maps

Definition 12. A topological space X is locally connected if ∀x ∈ V ⊂ X, V open, ∃ x ∈ U ⊂ V ,
U open and connected.

Figure 2.9: An illustration of the sets V,U,X in the definition of locally path connected

Definition 13. A topological space X is locally path connected if ∀x ∈ X and for all open neigh-
bourhoods V of x, there exists an open neighbourhood U ⊂ V of x such that U is path connected.
i.e.∀ x1, x2 ∈ U there exists path from x1 to x2 in V .

Remarks:

1. It is essential that in the definition ”for all open neighbourhoods V of x” is included, this
ensures that there exist locally connected spaces that are not locally path connected.

2. All C.W complexes are locally connected and locally path connected.

3. Local connectedness and connectedness are not related to each other.

Definition 14. Let X, X̃ be locally connected spaces and locally path connected spaces, p :
X̃ → X is a covering map if ∀ x ∈ X, there exists an open set U , x ∈ U , such that

p−1(U) = qy∈p−1(x)Vy

Such that p|Vy : Vy → U is a homeomorphism ∀ y ∈ p−1(x).

That is, p : X̃ → X is a covering map if for all x ∈ X, and for all open neighbourhoods U of
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X, the pre-image p−1(U) can be expressed as the disjoint union of open sets Vy ⊂ X̃. Where
each Vy can be mapped homeomorphically onto U .

Figure 2.10: Illustration of the definition of a Covering Map

Example 14. Define p : R→ S1, such that p(t) = e2πit. The p is an example of a covering map.

2.4 Homotopy Lifting Theorems

The general problem of this section is the following; Given a covering map p : X̃ → X and a
function f : Y → X does there exist a lift of f to X̃ i.e a function f̃ : Y → X̃ such that p ◦ f̃ = f?
And if such a lift exists is it unique? That is, does the following diagram commute?

X̃

XY

p
f̃

f

Theorem 5. Suppose α̃, β̃ : Y → X̃ such that p ◦ α̃ = p ◦ β̃ = f (X̃,X,Y locally connected, locally
path connected, path connected). Suppose ∃ y0 ∈ Y such that α̃(y0) = β̃(y0) then α̃ = β̃.

X̃

XY

p
α̃

β̃

f

Proof. Let F = {y ∈ Y s.t. α̃(y) = β̃(y)}. Note that F 6= ∅ since y0 ∈ F . We claim that F is open
and closed.

• We assume that X̃ is a Hausdorff space, this is equivalent to ∆ = {x̃, x̃|x̃ ∈ X̃} is closed.
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Then consider;
F = (α̃× β̃)−1(∆) α̃× β̃ : Y → X̃ × X̃

The since α̃× β̃ is continuous and ∆ is closed it follows that F is also closed.

• We suppose that y1 ∈ F , that is that α̃(y1) = β̃(y1). Let x1 = f(y1), then there exists U ⊂ X
open and connected, x ∈ U s.t.;

p−1(U) =
∐

x̃∈p−1(x1)

Vx̃

and P |vx̃ : Vx̃ → U is a homeomorphism for all x̃ ∈ P−1(x1). We will call such U an admissible
open set in X.

Figure 2.11: Proof of the first Homotopy Lifting theorem

Then there exists a neighbourhood y ∈W ⊂ Y s.t. α̃(w), β̃(w) ⊂ Vx̃1
. BU then it is clear that;

α|w = (p|vx̃1 )−1 ◦ f |w and β|w = (p|vx̃1 )−1 ◦ f |w

That is;
α̃|w = β̃|w

which implies that F is open.

Since Y is connected it follows from point set topology that the only open and closed sets are the
empty set or the entire space. Since F is not empty it follows that F = Y as required.

Theorem 6. Let X̃, X, Y be locally connected, locally path connected and path connected topo-
logical spaces. Also suppose that Y is compact. Suppose that given a commutative diagram as
fikkiws:

Y

Y × I

X̃

X

f̃

F̃

F

pi

where F ◦ i = p ◦ f̃ then there exists F̃ : Y × I → X̃ such that:
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1. p ◦ F̃ = F

2. f̃ = F̃ ◦ i

Proof. A simple compactness (of I and Y ) argument shows that;

• There exists a covering {U`} of X by admissible open sets U` ⊂ X.

• A covering {Wa} of Y and a partition 0 = t0 < t1 < ... < tm = 1 of I = [0, 1], such that;

F (W` × [ti−1, ti]) ⊂ U`

for all i = 1, ...m.

We can then construct F̃ on Y × [t0, t1], as in the picture.

Theorem 7. π1(S1, 1) ' Z

Proof.
Θ : Z→ π1(S1, 1)

i.e k 7→ (t
γk7−→ e2πikt) Θ is surjective. Let α : [0, 1]→ S1 be a loop at 1.

Let p(u) = e2πiu be the lifting map. Now we apply theorem (6) with Y = {pt} hence we have:

α̃ : [0, 1]→ R p ◦ α̃ = α

such that α̃(0) = 0. Also observe that,

pα̃(1) = α(1) = 1 =⇒ α̃(1) = k ∈ Z ⊂ R

20



Figure 2.12: Proof of π1(S1, 1) ' Z

We plan to show [α] = Θ(k). α̃ is any arbitrary path from 0 to k in R. α̃ is homotopic relative
{0, 1} ⊂ I to the path:

[0, 1] 3 t γ̃k−→ kt ∈ R

We have that α̃ ∼ γ̃k. We define the homotopy F :

F : t, s 7→ (1− s)α̃(t) + kst
F (t, 0) = α̃(t)

F (t, 1) = γ̃k(t) = kt

F (0, s) = 0

F (1, s) = k

Now p ◦ F : I × I → S1 is a homotopy from α to γk, observe that the following hold;
p ◦ F (t, 0) = p ◦ α̃(t) = α(t)

p ◦ F (t, 1) = p ◦ γ̃k(t) = γk(t)

p ◦ F (0, s) = p(0) = 1

p ◦ F (1, s) = p(k) = 1

Therefore α ∼ γk =⇒ [α] = Θ(k). Θ is injective. Supose Θ(k) = e ∈ π1(S1, 1). This means that
e ∼ γk as a path i.e ∃F : I × I → S1 such that:

F (t, 0) = 1

F (t, 1) = e2πikt

F (0, s) = F (1, s) = 1

By theorem 6 ∃F̃ : I × I → R lifting F such that:
F̃ (t, 0) = 0

F̃ (0, s) = 0

F̃ (1, s) = 0

but p ◦ F̃ (t, 1) = γk(t) = e2πikt so F̃ (t, 1) is a lift of γk starting at F̃ (0, 1) = 0 but t 7→ kt is another
such lift so by theorem (5) F̃ (t, 1) = kt for all t. Hence we have 0 = F̃ (0, 1) = k
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2.5 Functoriality of π1

We now introduce the concept of the homotopy category of pointed topological spaces. Where
the objects are pairs (X,x), where X is a path-connected topological space and x ∈ X.

Definition 15. A pointed continuous map, f : (X,x) → (Y, y) is a continuous map f : X → Y
such that f(x) = y.

This allows for the following definition of a pointed homotopy.

Definition 16. A pointed homotopy f ∼ g is a homotopy rel {x}. (recall this is a homotopy which
when restricted to, the subset, {x} is the identity map)

Similarly to before, such a homotopy allows for the definition of an equivalence relation.

Definition 17. A pointed homotopy equivalence, is a pointed continuous map f such that there
exists a pointed continuous map g : (Y, y)→ (X,x) such that;

f ◦ g ∼ idY rel{y}, g ◦ f ∼ idX rel{x}

Moreover, (X,x), (Y, y) are pointed homotopy equivalent if there exists a pointed homotopy equiv-
alence between them.

In order for this to be a category, we need to define the morphisms that act on the objects. Define
the morphisms to be the quotient of;

Mor((X,x), (Y, y)) = {f : (X,x)→ (Y, y),a p’td cont.map}
/
{p’td homotopy}

The following theorem has important implications.
Theorem 8. Consider the following,

π1 : {category of p’td topological spaces} → {category of groups}

Then this is a functor.

This has the following implications;

1. If f ∈Mor((X,x), (Y, y)), then this induces a group homomorphism;

f?π1(X,x)→ π1(Y, y)

2. (f ◦ g)? = f? ◦ g?.

This follows from the following, let f : (X,x) → (Y, y) be a continuous map and let γ : I → X be
a loop at x. Then define;

f?γ = f ◦ γ

This is a loop at f(x) = y.
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Corollary 1. If (X,x) and (Y, y) have the same p’ted homotopy type then;

π1(X,x) ' π2(Y, y)

CAUTION: This isomorphism is NOT canonical, it depends on the choice of homotopy equiva-
lence.

2.6 Applications of the fundamental group

Theorem 9 (Fundamental theorem of Algebra). Every polynomial p(z) = zn + a1z
n−1 + · · ·+ an

(ai ∈ C) has at least 1 root.

Figure 2.13: The proof of the FTA

Proof. Suppose for a contradiction that p(z) 6= 0 ∀z ∈ C.Let r ≥ 0 be a real number and consider

t 7→ fr(t) =
P (re2πit)/P (t)

|P (re2πit)/P (t)|
∈ S1 ⊂ C

This is a loop on S1 based at 1.
[0, 1]×[0, r0] 3 t, r 7→ fr(t) as I move r this is a homotopy of loops. Fix r = r0 ≥ max{|a1|, |a2|, . . . , |an|, 1}.
If |z| = r0 we have:

|z|n = r0 ≥ r0r
n−1
0 > (|a1|rn−1

0 + |a2|rn−2
0 + · · ·+ |an|) ≥ |a1z

n−1 + a2z
n−2 + · · ·+ an|

Now consider:
Ps(z) = zn + s(a1z

n−1 + · · ·+ an)

This polynomial has no roots on |z| = r0, for all s ∈ [0, 1] get

I × I 3 (t, s)→ fr0(t, s) ∈ S1

is a homotopy of loops on S1. We get a homotopy from t → fr0(t) to the loop γn : t → e2πint

which is a contraddiction.

Theorem 10 (Brouwer fixed point theorem). h : D2 → D2 continuous =⇒ ∃x ∈ D2 such that
h(x) = x

Proof. Suppose for a contradiction that h(x) 6= x ∀x ∈ D2. Define r : D2 → S1 as in the picture,
r is a retraction of i : S1 ↪→ D2 (if x ∈ S1, r(x) = x). There can be no such retraction. It would
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Figure 2.14: Construction of the retraction

contradict the functoriality of π1

S1 i
↪−→ D2 r−→ S1 r ◦ i = idS1

π1(S1)︸ ︷︷ ︸
'Z

i∗
↪−→ π1(D2)︸ ︷︷ ︸

'0

r∗−→ π1(S1)︸ ︷︷ ︸
'Z

r∗ ◦ i∗ = idS1

r∗ ◦ i∗ = (r ∗ i)∗ = id∗ = id
We have a contradiction.

Theorem 11 (Borsuk-Ulam). Let f : S2 → R2 be a continuous function then ∃x ∈ S2 such that
f(x) = f(−x)

Proof. Suppose for a contradiction that f(x) 6= f(x) ∀x ∈ S2. Define:

g : S2 → S1 g(x) =
f(x)− f(−x)

|f(x)− f(−x)|

Consider the loop:

Figure 2.15: Proof of Borsuk-Ulam

t→ η(t) = (cos 2πt, sin 2πt, 0)
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and the loop:
γ = g ◦ η

The key point is to argue that γ is non-trivial. Note that g(−x) = g(x) this implies:

γ(t+
1

2
) = −γ(t) t ∈ [0, 1]

Now lift γ to γ̃ : [0, 1]→ R, hence

Figure 2.16: Lift of γ

γ̃(t+
1

2
) = γ̃(

1

2
) +

k

2
k ∈ Z odd

Independent of t by continuity therefore we have:

γ̃(1) = γ̃(
1

2
) +

k

2
= γ̃(0) + k k ∈ Z odd

therefore γ loops around an odd number of times =⇒ γ 6= 0 in π1(S1, g(1, 0, 0)). This contradicts
the functoriality of π1 as γ − g∗η and η ∼ 0 on S2

Theorem 12. π1(S2, ∗) = 0

Figure 2.17: Proof of Pi1(S2, ?) = (0)

2.7 Free Groups with Amalgamation

Definition 18. Suppose we are given a diagram of Groups, i.e. G1, G2 are groups and H is a
subgroup of G1 and G2, together with the following diagram,
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G1

H G2

i1

i2

The categorical pushout of this diagram is a commutative diagram;

G1

H G2

G1 ∗
H
G2

i1

i2

j1

j2

This diagram has the universal property of j2 ◦ i2 = j1 ◦ i1.
This property is equivalent to;

G1

H G2

G

i1

i2

p1

p2

Such that p2 ◦ i2 = p1 ◦ i1, then there exists a unique q : G1 ∗
H
G2 → G, which makes everything

commute. That is;

G1 ∗
H
G2G1

G2 G

H

i1

i2

∃! q

p2

j2 p1

i1

Also G1 ∗
H
G2 is called the Free Product of G1 and G2 with amalgamation of H.

It is also worth noting that the push-out of groups is most similar to the direct product of commu-
tative rings.

Theorem 13. Push-outs of groups exist.

Instead of giving a proof, an informal discussion is given instead.

1. If H = {e} then G = G1 ∗
H
G2 is the free product and G is the group of words. That is every

element g ∈ G can be expressed as g = A1A2 . . . Ar where Ai ∈ G1 or G2. Moreover, a
word is said to be reduced if no consecutive ”letters” are in G1 and G2. Therefore G is the
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set of reduced words.

2. G1∗HG2 = G1 ∗G2
/
N whereN E G1∗G2 is the normal subgroup generated by {i1(h), h2(h−1)|h ∈

H}. It is really easy to see that G1 ∗G2
/
N satisfies the required universal property to be

the pushout.

3. Suppose you have G1, G2 & H given in terms of presentations:

G1 = 〈u1, . . . , uk|r1, . . . , rl〉

G2 = 〈v1, . . . , vm|s1, . . . , sn〉

H = 〈w1, . . . , wp|t1, . . . , tq〉

G1 ∗H G2 = 〈u1, . . . , uk, v1, . . . , vm|r1, . . . , rl, s1, . . . , sn, i1(w1)i2(w−1
1 ), . . . , i1(wp)i2(w−1

p )〉

Example 15. Consider,
G = Z

/
2 ∗ Z

/
2

Let A,B be the non identity elements in G1 = Z
/

2 and G2 = Z
/

2 , then G is the set of words
with letters A,B. E.g. a few examples of words are A,B,AB,ABA,BABA, . . . etc.
It is possible to define a homomorphism;

φ : Z
/

2 ∗ Z
/

2 → Z
/

2

Such that, φ(reduced word) = 0 if the length of the word is even and φ(reduced word) = 1 if the
length of the word is odd.
In fact,

Z
/

2 ∗ Z
/

2 = Z n Z =

〈
A, 〈AB〉 =: C|A2 = e,ACA = C−1

〉
This can be considered as the ”infinite” dihedral group denoted by D∞.

Similar arguments can be used to study Z
/

2 ∗ Z
/

3 , this is done in the following example.

Example 16. Let
Γ = PSL2(Z) = SL2(Z)

/
±Id

This is the group of transformations of h+ = {z ∈ C|Im(Z) > 0} of the form,

z 7→ az + d

cz + d
, where

(
a b

c d

)
∈ SL2(Z), ad− bc 6= 0

Consider the following two specific rational functions of this form. Let,

S =

(
0 1

−1 0

)
, then z 7→ −1

z

And similarly;

T =

(
1 1

0 1

)
, then z 7→ z + 1

Therefore, after some effort it is possible to present Γ as;

Γ =

〈
S, T |S2 = 1, (ST )3 = 1

〉
=⇒ Γ ' Z

/
2 ∗ Z

/
3
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2.7.1 Free Products and Presentations

Another way of determining the free product of groups is by considering the presentations. Sup-
pose that G1, G2, H are given in terms of the presentations, where u1, . . . , uk ∈ G1 are elements
and r1, . . . , rl are relations on the elements of G1 etc. . .

G1 =

〈
u1, . . . , uk

∣∣∣∣r1, . . . , rl

〉
, G2 =

〈
v1, . . . , vm

∣∣∣∣s1, . . . , sn

〉
, H =

〈
w1, . . . , wp

∣∣∣∣t1, . . . , tq〉
Then;

G1 ∗
H
G2 =

〈
u1, . . . , uk, v1, . . . , vm

∣∣∣∣r1, .., rl, s1, . . . , sn, i1(w1)i2(w−1
1 ), . . . , i1(wp)i2(w−1

p )

〉

Example 17. We demonstrate the above idea by considering the free product of;

σ3 ∗
Z/2

Z/2

Firstly recall that σ3 can be presented as σ3 = 〈a, b|a3, b3, baba〉, and Z
/

4 can be presented as
Z
/

4 = 〈c|c4〉. Similarly, Z
/

2 has presentation, Z
/

2 = 〈d|d2〉.
Then there exists two inclusion maps;

1. i1 : Z
/

2 ↪→ σ3 such that i1(d) = b.

2. And, i2 : Z
/

2 ↪→ Z
/

4 such that i2(d) = c2.

Therefore the required free product admits the following presentation;

σ3 ∗
Z/2

Z
/

2 =

〈
a, b, c

∣∣∣∣a3, b2, baba, c4, bc2(= i1(d)i2(d−1))

〉

2.8 Seifert - van Kampen

Theorem 14. Suppose X = U1 ∪U2, U1 and U2 are open, path connected. Let U = U1 ∩U2. For
x ∈ U , then;

π1(X,x) = π1(U1, x) ∗
π1(U,x)

π1(U2, x)

This can be interpreted as the as the red part of figure 14, the ’pushout’ is implied by the black
part making the diagram commute. However this theorem requires some explanations which we
will now give. A proof of this theorem is not given in this course, but one is easily found in the
literature.

28



π1(U1, x)

π1(U, x) π1(U2, x)

π1(X,x)

i1?

i2?

j2?

j1?
U1

U U2

X

i1?

i2?

j2?

j1?

Figure 2.18: Pushout Commutative Diagrams

2.8.1 Applications of Seifert van-Kampen to computing the Fundamental
Group

We now introduce the notation for the join of pointed topological spaces n(X1, x1) and (X2, x2);

X1 ∨X2 = X1

∐
X2

/
x1 ∼ x2

An example of this is the following;
Example 18. We will show that;

π1(S1 ∨ S1) = Z ∗ Z

Proof. Observe that by the above definition of ”∨”, S1 ∨ S1 can be graphically represented as
We aim to show this result using Seifert -van Kampen. Therefore let; Since U1, U2 deformation

Figure 2.19: S1 ∨ S1

Figure 2.20: The definition of U1, U2 and U = U1 ∩ U2

retracts to S1, and U deformation retracts to {x}, then Seifert-van Kampen implies that π1(S1 ∨
S1) = Z ∗ Z

Similarly,
Example 19.

π1(
n
∨ S1) = Z∗n
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Proposition 4. Consider the standard 1-pt compactification of R3 ⊂ S3. Then, the fundamental
group is unaffected i.e.

π1(R3\K) = π1(S3\K)

Proof. This is left as an exercise and follows from the Seifert van-Kampen theory.

Example 20. Let K = S1 ⊂ R3 then
π1(R3\K) ' Z

Proof. Observe that S3\K deformation retracts to S2 ∪ Bar. To see this, observe that all points
outside the sphere can be mapped to the surface of the sphere and any points within the sphere
can be mapped to either the bar or the surface of the sphere. Now S2 ∪ Bar deformation retracts
to S2 ∨ S1, therefore we have:

π1(R3\K) ' π1(S2 ∨ S1) ' Z

This proof can be seen graphically in the figure below.

Figure 2.21: The deformation retraction of §2\K

Example 21. Let A and B be disjoint circles

π1(R3\(A ∪B)) ' Z ∗ Z

Proof. Observe that π1(R3\A ∪B) deformation retracts on S2 ∨ S1 ∨ S2 ∨ S1 therefore we have:

π1(R3\K) ' π1(S2 ∨ S1 ∨ S2 ∨ S1) ' Z ∗ Z

Example 22. Let A and B be linked circles; Then

π1(R3\A ∪B) ' Z× Z

Proof. Using the above proposition above it is sufficient to consider π1(S3\(A ∪ B)). Observe
that S3 can be expressed using the Heegaard splitting as;

S3 = S1 ×D2
⋃

S1×S1

S1 ×D2
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Figure 2.22: Deformations retractions in π(R3\K)

Then S3\(A ∪B) deformation retracts on the torus S1 × S1 therefore:

π1(R3\A ∪B) ' π1(S1 × S1) ' Z× Z

Figure 2.23: The deformation retractions of π1(R3\(A ∪B))
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Definition 19. A torus knot Km,n ⊂ S3 with hcf(m,n) = 1, is a knot pointed on S1×S1 wrapping
n times around the first S1 and m times around the second S1.
We now consider the fundamental group associated with a torus knot.

Figure 2.24: A trefoil knot

Example 23.
π1(Km,n) = 〈a, b|am = an〉

Proof. Consider the deformation retraction of S3\Km,n on the space Xm,n = S1 × [0, 1] ∪f S1 ×
{0, 1}
where f : A = S1 × {0, 1} → S1 × {0, 1}

π1(S3\Km,n) = 〈a, b|am = bn〉 = G

We can argue that G is a Ccentral extension 0 → Z → G → z/mZ ∗ z/nZ → 0 G determines
m,n (See Hatcher for more details).

Example 24. Surfaces of genus g

π1 = (Σg) = 〈a1, b1, a2, b2, . . . , ag, bg|[a1, b1], [a2, b2], . . . , [ag, bg]〉

given G one can always abelianise it i.e take Gab = G
/

commutators which leaves

π1(Σg)
ab = Z2g

Figure 2.25: A genus 2 surface
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Chapter 3

Covering Space Theory

Throughout the whole of this section we will assume that p : X̃ → X is a covering map, where
X̃ and X are both path connected and locally path connected. We will also assume that X is
semi-locally simply connected (see definition below). The aim of this section is, for a fixed X,
is to understand all of the covering spaces X̃ such that there exists p : X̃ → X. The following
definitions are needed in the statement of the main theorem of this section- the fundamental
theorem of covering spaces.

Definition 20. X is semi-locally simply connected if ∀x ∈ X there exists a neighbourhood of x
such that;

x ∈ U
j
↪→ X

such that;
j∗ : π(U, x)→ π1(X,x)

is the trivial homomorphism.

Figure 3.1: A semi-locally connected set

We now introduce the concept of automorphisms of covers.

Definition 21. A deck transformation of p : X̃ → X is a commutative diagram such that p◦φ = p
where φ : X̃ → X̃ is a homeomorphism.

Denote;
G(X̃) = G(X̃

/
X )

be the group of all deck transformations.

The following definitions are essential to stating the fundamental theorem.
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X̃ X̃

X

φ

p

p

Definition 22. Suppose that p : (X̃, x̃0) → (X,x0), q : (Ỹ , ỹ0) → (X,x0) are coverings, then a
pointed isomorphism is a pointed homeomorphism, φ : (X̃, x̃0)→ (Ỹ , ỹ0) such that q ◦ φ = p.

Similarly, suppose p : X̃ → X, q : Ỹ → Y are coverings, then an isomorphism is a homeomor-
phism φ : X̃ → Ỹ s.t. q ◦ φ = p.

Definition 23. A covering p : X̃ → X is normal if for all x ∈ X and for all x̃!, x̃2 ∈ X̃ s.t.
p(x̃1) = p(x̃2) = x, there exists a g ∈ G(X̃

/
X ) such that g(x1) = x2.

i.e. a covering is normal if for every point in X there is a deck transformation mapping any two of
it’s preimages under p.

3.1 The Fundamental Theorem of Covering Spaces

We are now ready to state the Fundamental Theorem of Covering Spaces.

Theorem 15. Assume that X satisfies the assumptions outlined at the start of this section.
Part (I)
There exists a bijection such that;{

coverings p : (X̃, x̃0)→ (X,x0)

}/
p’ted isomorphism ↔

{
set of subgroupsH ⊂ π1(X,x0)

}

(Where p : (X̃, x̃0)→ (X,x) 7→ H = p∗π(X̃, x̃0) ⊂ π1(X,x))
However it is possible to ignore the basepoints to give;{

coverings p : X̃ → X

}/
isomorphism ↔

{
conjugacy classes of H ⊂ π1(X,x0)

}

Part (II)
(A) Also p : X̃ → X is normal⇐⇒ H ⊂ π1(X,x0) is a normal subgroup.

(B) In general;

G(X̃
/
X ) = N(H)

/
H

Where N(H) = {g ∈ H
∣∣gHg−1 = H} that is the normalise of H.

So if H is normal then;
G(X̃

/
X ) = π(X,x0)

/
H
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Proof. Fix (X,x0) path connected, locally path connected, semilocally simply connected.
Given H we need somehow to ‘cook up’ (X̃, x̃0)

p−→ (X,x0). The most important case is H = (e),
which we will now consider.

We want to construct a simply connected covering (i.e with π1(X̃, x̃0) = {e}). This cover is called
the universal cover.

What are the ’points’ of X̃?

Consider the following correspondence, which is given by [γ] 7→ γ(1).{
points x̃ ∈ X̃

}
↔
{

homotopy classes [γ] of paths γ : I → X̃with γ(0) = x̃0

}
Which is equivalent to,{

points x̃ ∈ X̃
}
↔
{

homotopy classes [α] of paths α : I → Xwith γ(0) = x0

}
where the correspondence is given by [γ] ⊂ X̃ 7→ [p ◦ γ] ⊂ X on X.
Moreover the following correspondence, given by γ 7→ p ◦ γ, also holds.{

Homotopy classes [γ] of paths in X̃with γ(0) = x̃0

}
↔
{

homotopy classes [α] of paths α : I → Xwith γ(0) = x0

}

This is a bijective correspondence: it is surjective as paths can be lifted and injective as homo-
topies can be lifted.

We define X̃ = {[γ]|γ : I → X with γ(0) = x0} and p : X̃ → X is defined by [γ] 7→ γ(1) ∈ X

What do I need to do?

1. Endow X̃ with a topology and verify that p is a covering map

2. Show π1(X̃, x̃0) = (e)

In order to prove 1 we consider:

U = {U ⊂ X open |U is path connected and J∗ : π1(U, u)→ π1(X,u) j∗ = 0}

Claim 1: by the assumption of semi-locally simply connected U is a basis for the topology of X.
We don’t prove this completely, let just verify 2.
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Pick any z ∈ U1 ∩ U2 and let z ∈ V ⊂ U1 ∩ U2 be path connected and j : v ↪→ x =⇒ j∗ = 0.
Therefore V ∈ U
How to put a topology on X̃?

Let [γ] ∈ X̃, x = p([γ]) = γ(1) choose x ∈ U i
↪−→ X with j∗ = 0

U[γ]{[γ · η]|η : I → U}

Claim 2: the set of U[γ] is the basis for a topology on X̃

Note: U[γ] = U[γ′]if [γ′] ∈ U[γ] indeed [γ′] = [γη] need a bijection U[γ] = U[γ′]

[γ(ηη′)] = γ′η′

[γη′] = [(γη)(η̄η′)]

Claim 2 is not proved completely. We check 2 (for a basis) holds given U[γ], V[γ′] & [γ′′] ∈ U[γ]∩V[γ′]

This means [γ′′] = [γη] = [γ′η′] in particular U[γ] = V[γ′] & V[γ] = V[γ′].

Take z = γ′′(1) ⊂ W ⊂ U1 ∩ U2 with j∗ = 0, j : W ↪→ X then W[γ′′] ⊂ U[γ′′] = U[γ] ⊂ V[γ′′] = Vγ′ .
This puts a topology on X̃. p is obviously a covering map.

p : U[γ]
'−→ U

This concludes the proof of (1).
It remains to show that (X̃, x̃0) is path connected & π1(X̃, x̃0) = {e}
Fix path γ : I → X, γ(0) = x0. Consider path in X̃ Γ : [0, 1]→ X̃.

Γ : [0, 1] 3 s 7→ [γs] where γs(t) =

{
γ(t) t ≤ s
γ(s) t ≥ s

Then Γ(0) = [x0], Γ(1) = [γ], Γ(s) = [γs] & its endpoints γ(s)
So p(Γ(s)) = γ(s) i.e Γ : I → X̃ is the lift of γ : I → X. Observe that Γ goes from [x0] to an
arbitrary [γ] therefore X̃ is path connected.
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To see π1(X̃, x̃0 = {e} (because in general p∗ is injective).

Suppose γ is a loop at x0 in p∗π1(X̃, x̃0) this means that γ lifts to a loop in X̃ at x̃0. This means
that Γ is a loop in X̃. So Γ(1) = [γ] = Γ(0) = [x0].

We now consider the case for a more general H ⊂ π1(X,x0). To do this we need to construct a
cover q such that;

(XH , xH)
q→ (X,x0)

We now sketch a proof in this case. Firstly, let (X̃, x̃0) be the universal cover just constructed.
And define an equivalence relation R on X̃ by;

[γ] ∼R [γ′] ⇐⇒ γ(1) = γ′(1) and the loop [γγ̄′

(Recall that γ̄ is the ’inverse’ loop.)
Then if [γ] ∼R [γ′], XH = X̃

/
R has the quotient topology. And so;(

U[γ] × U[γ′]

)
∩R

is the graph of the homeomorphism and U [γ] ' U[γ
′].

Therefore p : XH → X is a covering map.

WE now check that,

Remark 1. One can go further and define;
(1) a category of coverings of X where the morphisms are diagrams s.t. Where φ is continuous
and q ◦ φ = p (2) In algebra, it is possible to make a category out of the ”lattice” of subgroups of
a group G. If H1, H2 ⊂ G a subgroup, then a morphism φ : H1 → H2 is. . .
(3)Express the fundamental theorem as an equivalence of these 2 categories.

Lemma 1. Let p : (X̃, x̃0)→ (X,x0) covering, then p∗ : π1(X̃, x̃0)→ π1(X,x0)
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X̃ Ỹ

X

φ

p

q

Proof. Suppose γ : I → X̃ is a loop at X̃0, and suppose that p ◦ γ : I → X is homotopic to eX0
.

Then there exists a homotopy, F : I × I → X such that;
F (0, t) = p ◦ γ(t)

F (1, t) = x0

F (s, 0) = x0

F (s, 1) = x0

This can be seen graphically in figure 3.2. And so by the homotopy lifting theorem, the homotopy

Figure 3.2: Graphical representation of the proof of lemma 1

from p ◦ γ to eX0
, lifts to a unique homotopy form γ to eX̃0

in X̃
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Example 25. Coverings S1 ∨ S1. Recall that S! ∨ S1 has fundamental group π1(S1 ∨ S1) = Z ∗Z
and can be seen graphically as;

1. Where the subgroup H = 〈a, b2, bab−1〉 ⊂ Z ∗ Z.

2. In this case the subgroup H = 〈a2, b2, ab〉.

3. Therefore H = 〈a2, b2, aba, bab〉.
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Chapter 4

Homology

4.1 Simplicial Homology

We now introduce the concept of Homology. See Hatcher for an intuitive introduction to this
theory.
Definition 24. The standard n-simplex is;

∆n = {(t0, . . . , tm)

∣∣∣∣ti ≥ 0,
∑
i

ti = 1} ⊂ Rn+1

Figure 4.1: The standard simplex ∆2 ⊂ R3.

Example 26.
Definition 25. A n-simplex ⊂ Rm is conv{v0, . . . , vm}, ‘the convex hull’, where vi are not all
contained in an affine subspace of dimension < n. The vi are known as vertices.

Figure 4.2: A 3-simplex in R3

We will work with ordered n-simplices, that is a n-simplex with a specified ordering of the ver-
tices. We will denote this by, [v1, . . . vn].
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There exists a natural affine isomorphism ∆n → [v0, .., vn] where (t0, . . . , tn)→
∑
i tivi.

Remark 2. The standard simplex is ordered, [e0, . . . , en] ⊂ Rn+1 where ei is the ith standard
basis vector.
Definition 26. The facets of [v0, .., vn] are the ordered (n− 1)-simplices;

∆i
n−1 = [v0, . . . , v̂i, . . . , vn

Where v̂i means omit vi.
Definition 27. A ∆-complex structure on a space X is a collection of continuous maps;

σα : ∆n → X

Such that the following hold.

1. σα|
◦
∆n : ∆n → X is injective and for all x ∈ X there exists a unique α : x ∈ σα(∆n)

2. If ∆n−1 ⊂ ∆n is a facet then ∃σα|∆n−1 = σβ

3. U ⊂ X is open if and only if for all σ−1
α (U) ⊂ ∆n are open

Note we define the topological boundary to be;

∂∆n = ∪ni=0∆i
n−1

And the topological interior to be;

◦
∆n = ∆\∂∆n = {

∑
tiri

∣∣∣∣0 < ti for i = 0, . . . , n and
∑

ti = 1}

We now give examples of a few constructions where we impose a ∆-simplex structure, in order
to calculate the homology groups.

Example 27. 1. T = torus;

Figure 4.3: the ∆-simplex structure on a Torus

This is now a ∆-complex structure where there are; 1 0-dimensional simplex [v], 3 1-
dimensional simplices a, b, c and 2 2-dimensional simplices U,L.

2. P2(R)

This is also a ∆ complex structure with 2 0-dimensional simplices, 3 1-dimensional sim-
plices and 2 2-dimensional simplices.

3. Similarly, consider the Klein Bottle.

Where there is 1 0-dimensional simplex, 3 1-dimensional simplices and 2 2-dimensional
simplices.
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Figure 4.4: ∆-simplex structure on P2(R)

Figure 4.5: The ∆-simplex structure on the Klein bottle

4. A similar contruction can be applied to a surface of genus g.

We note that;

• X has a quotient topology X = t∆α
n
/
∼

• X is always Hausdorff

• A ∆-complex is a very special kind of CW complex.

We now construct the homology groups Hn(X).

Definition 28. A complex of abelian groups is a diagram;

· · · → Cn+1
∂n+1→ Cn

∂n→ Cn−1
∂n−1→ . . .

where, Ci is an abelian group for each i ∈ N.
Each ∂i : Ci → Ci−1 is a homeomorphism for all i ≥ 1, and ∂n ◦ ∂n−1 = 0 for all n.

Using this definition it is possible to define the Homology groups as follows.

Definition 29. Let the n-cycles be denoted by

Zn = ker(∂n) ⊂ Cn

and the n- boundaries be,
Bn = Im(∂n+1) ⊂ Cn

Then the n-homology, Hn is;
Hn = Zn

/
Bn

It is possible to define a complex of abelian groups out of a ∆-complex. This is done as follows,
let C∆

n be the free abelian group with basis the n-simplices, ∆α
n, of the complex ∆. An element of

C∆
n can be expressed as

∑
nα∆α

n, with nα ∈ Z. (We require that all but finitely many of these nα
are equal to 0.)
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Then define the homeomorphisms ∂i : C∆
i → C∆

i−1 to act on the basis as;

∂(∆α
n) =

n∑
i=1

(−1)i∆α,i
n

We then have the following lemma.
Lemma 2. ∂2

i = 0 for all i.

Proof. We prove this by direct calculation.

∂∂[v0, . . . , vn] = ∂
∑
i

(−1)i[v0, . . . , v̂i, . . . vn]

=
∑
j<i

(−1)i[v0, . . . , v̂j , v̂i, . . . , vn] +
∑
j>i

= 0

We can then define that;
H∆
n X := Hn(C∆

n (X))

We now use this method to compute the Homology groups for the torus, the projective plane, the
Klein bottle and for a surface of genus g.

Example 28. Apply the ∆-complex structure onto the torus as done previously.

This gives, 2 2-cells, 3 1-cells and 1 1-cell, this structure produces the sequence of;

0 C∆
2 (X) C∆

1 (X) C∆
0 (X) 0

∂3 ∂2 ∂1 ∂0

Consider the map ∂1. Then for all 1-cells, a, b, c, we get ∂1(a) = v−v = 0 similarly ∂1(b) = ∂1(c) =
0, and so ∂1 = 0. And hence C∆

0 ' Z.

Now consider the map ∂2. ∂2(U) = c − a − b and ∂2(L) = a + b − c. Hence {c, a + b − c}
forms a basis for ∆1 and so it follows that H∆

1 (X) ' Z⊕ Z.

Moreover since the ∆-complex structure contains no 3-simplices the higher simplicial homol-
ogy groups are zero. Moreover H∆

2 (T ) ' ker(∂2), which is an infinite cycle generated by U − l.
Since ∂2(pU +qL) = (p+q)(a+b−c) = 0 if and only if p = −q. Therefore the simplicial homology
groups of the torus are;

H∆
n (X) =


Z⊕ Z for n = 1

Z for n = 0, 2

0 for n ¿ 2
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Example 29. We will now consider the homology groups for the projective plane. Consider the
∆-complex structure that can be applied onto the projective plane, that is consider the projective
plane to be; Then this induces the following sequence of groups.

0 C∆
2 (X) C∆

1 (X) 0
∂3 ∂2 ∂0

Let the 1 cells be vertices v0, v2. Then;

H∆
0 = Ker∂0

/
Im∂1

= 〈v0, v1〉
/
v1 − v0

since ∂1(a) = v1 − v0, ∂1(b) = v1 − v0. Therefore, H∆
0 X = Z.

H∆
1 X =

〈a+ b, c〉
〈a+ b+ c, a+ b− c〉

=
〈a+ b〉
2〈a+ b〉

' Z
/

2Z

And;
H2 = ker∂2 = (0)

And all other groups are (0).
Example 30. Consider now the homology groups of the Klein bottles. Then this structure gives

the following sequence;

0 C∆
2 (X) C∆

1 (X) 0
∂3 ∂2 ∂0

Where ∂2 is given by the matrix;

∂2

(
U

L

)
=


−1 1

1 1

1 −1


(
U

L

)

Where U and L are the 2-cells in complex. And ∂1 = 0, by arguments similarly to above.

H∆
0 K ' Z, H∆

1 K ' ker∂1
/
im∂2

=
〈a, b, c〉
a = b+ c

=
〈a, b〉
〈2b〉

' Z⊕ Z
/

2Z
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4.2 Singular Homology

We now aim to define the Homology groups for more general spaces than the ∆-complexes.

Definition 30. Let X be a complex space, a singular n-simplex in X is a continuous map
σ : ∆n → X.
We form a C·X :

CnX =
⊕

σ:∆n→X
Z[σ]

(a n-chain) singular simplex. An element is a formal linear combination:

c =
∑

σ:∆n→X
uσσ

where uσ ∈ Z, finitely many of them are 0.

Let ∂n : CnX → Cn−1X where:

∂nσ =

n∑
i=0

(−1)i[σ|[v0 . . . v̂i . . . vn]]

(Then it’s clear that ∂2 = 0.)
H∗nX = Zn

/
Bn

Recalling that; Zn = cycles = Ker(∂n), Bn = boundaries = Im(∂n+1).

Moreover notice that; Bn ⊂ Zn because ∂2 = 0.

We now introduce a few fundamental properties.

Proposition 5.

1. If X =
∐
Xα with Xα path-connected then HnX =

⊕
HnXα

2. If X 6= ∅ and path-connected then H0X = Z

3. If X = {pt} then HnX =

{
Z if n = 0

(0) otherwise

4. Basic functoriality: a continuous map g : XtoY induces f∗ : HnX → HnY ∀n which statis-
fies the functorial property i.e (f ◦ g)∗ = f∗ ◦ g∗

Proof.

1. This is obvious since
Cn =

⊕
α

CnXα

(A simplex is path connected. A singular simplex σ : ∆→ X must land in one and only one
of the path components Xα).

2. H∗X = C0(X)
/
Im(∂1) Note that C0X =

⊕
x∈X Z.x

Define ε : C0X → Z by,

ε

(
k∑
i=1

nixi

)
=

k∑
i=1

ni ∈ Z
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Then it is clear that Im(∂1) ⊂ Ker(ε). And so we claim that if Im(∂1) = Ker(ε) then
ε : H0(X) ' Z.

Consider

z =

k∑
i=1

nixi ∈ Ker(ε)

That is
∑k
i=1 ni = 0, then choose x0 ∈ X. And so;

σi : I → X,σi(0) = xi, σi(x) = xi

Then these σi are singular 1-simplexes.

∂

(
k∑
i=1

niσi

)
=

k∑
i=1

ni∂(σi)

=

k∑
i=1

ni(xi − x0)

=

k∑
i=1

unixi −
k∑
i=1

unix0

=

k∑
i=1

xi = z

Therefore z ∈ Im(∂1).

3. If X = {pt} CnX = Z and ∂n =

{
0 if n = odd
1 if n = even

Then this implies that;

Hn{pt} =

{
Z if n = 0

(0) otherwise

(4) If σ : ∆n → X is a singular simplex in X then;

f∗σ := f ◦ σ : ∆n → Y

is a singular simplex in Y . This produces the following commutative diagram;

C2(X) C1(X) C0(X)

C2(Y ) C1(Y ) C0(Y )

f∗ f∗ f∗
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That is f∗ ◦ ∂ = ∂ ◦ f∗. And so, f∗(BnX) ⊂ BnY , f∗(ZnX) ⊂ ZnY , and this implies that;

f∗ : HnX → HnY

An informal discussion on visualising cycles and boundaries.

An orientated 2-dimensional ∆-complex with boundary structure on (Y, ∂Y ) and a continuous
map, f : Y → X, ’gives’ a chain, [f ] ∈ C2X which can be expressed as;

[f ] =
∑
σ∈∆[2]

f |σ, ∂[f ] = [f |∂Y ∈ C1X, ∂[f ] = 0 if ∂Y = ∅

Consider a 2-chain in X, then a 2-chain is a boundary if ∂Y = ∅.

Figure 4.6: 2-chain is a boundary if ∂Y = ∅

Consider the image of a trivial 1-homology class on X. Then the 1-cycle = ∂(2 chain with bound-
ary).

Remark 3. It’s easy to see that a 2-chain/2-cycle etc. . . is a formal sum of things of this sort.
However, this works for CnX,n ≥ 3 in these pictures Y was a manifold but for n ≥ 3 we need to
allow Y to be ’singular’ in codimension ≥ 3.
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Figure 4.7: 1-cycle = ∂(2 chain with boundary)

4.2.1 Homotopy Invariance of Singular Homology

We aim to prove that homotopic spaces have isomorphic Homology Groups, this will be done
by showing that a map f : X → Y induces a homomorphism f∗ : Hn(X) → Hn(Y ) for each n
and that f∗ is an isomorphism if f is a homotopy equivalence. But we begin with the following
definition;

Definition 31. A chain map between complexes K,L is a group homomorphism f : K → L
such that f ◦ ∂ = ∂ ◦ f .

We remark that in the case when K = Cn(X) and L = Cn(y) for some X,Y say then the property
that ∂f = f∂ implies that f sends cycles to cycles and boundaries to boundaries. Therefore this
has the property that f# induces a homomorphism f∗ : Hn(X) → Hn(Y ). This can be stated
more formally as;

Lemma 3. A chain map induces a homomorphism f∗ : HnX → HnY .

For clarity it is useful to define what homotopic means in the context of chain maps.

Definition 32. Then f., g. : K → L are homotopic if there exists a prism operator p. : K. → L.+1

such that ∂P + P∂ = g − f .

Then we can formulate the main theorem of this section that,

Theorem 16. If two maps f, g : X → Y are homotopic, then they induce the same homomor-
phism f∗ = g∗ : Hn(X)→ Hn(Y ).
Moreover these induced maps f∗ are isomorphisms.

Proof.

An application of this theorem is the following.
Example 31. Suppose X is contractible then H̃n(X) = 0 for all n. This is since X is homotopic
to a point set and so these spaces must have isomorphic homology groups.

4.3 Reduced Homology

Definition 33. A pair X,A is good if there exists an open set A ⊂ U ⊂ X such that A is a
deformation retract of U .

We define the reduced homology ofX to be the homology of the complex of augmented singular
classes of X, where;

C̃nX =

{
CnX if n 6= −1

Z if n = −1

48



And from this it implies that;

H̃nX =

{
HnX if n 6= −1

ker(H0X
ε→ Z) if n = −1

where ε : C0X → C−1X where ε(x) = 1 for all x.
Example 32. Suppose x ∈ X is a point then Hn(X, {x}) ' H̃nX. This is more or less trivial
since;

H0({x}) =

{
(0) if n 6= 0

Z if n = 2

And we have the following chain;

Which implies that;
H0(X, {x}) ' H̃0X

Theorem 17. For X,A a good pair there exists a long exact sequence;

· · · → H̃nA→ H̃nX → ˜Hn(X
/
A )→ H̃n−1A→ . . .

Proof. This is more or less just the proof of the long exact sequence of the pair (X,A). The
relative homology is easier to understand the quotient map;

q : (X,A)→ (X
/
A, A

/
A = {pt})

Which induces an isomorphism;

q∗ : Hn(X,A)→ Hn(X
/
A, {pt}) = H̃n(X

/
A )

Let us prove that q∗ is indeed an isomorphism.

Let A ⊂ U ⊂ X be as in the definition of a good pair. Then by excision we have that;

Hn(X,U) ' H(X
/
A, U

/
A )

And;
Hn(X

/
A ) ' Hn((X

/
A )\(A

/
A ), (U

/
A )\(A

/
A ))

Since we have a good pair the following commutative diagram exists. Then by the long exact

Hn(X,A) Hn(X,U) Hn(X\A,U\A)

� �
Hn(X

/
A, A

/
A ) Hn(X

/
A, U

/
A ) Hn((X

/
A )\(A

/
A ), (U

/
A )\(A

/
A ))

i∗ '

q∗

j∗ '
q′∗

q′′∗

sequence of the pair U,A it follows that i∗ is an isomorphism. Similarly j∗ is an isomorphism.
Therefore q∗ is also an isomorphism by the commutative property of the diagram above.

Example 33. If n ≥ 1 then;

Hi(S
n) =


Z if i = 0

Z if i = n

0 otherwise
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To prove this we apply the previous result to Dn, ∂Dn ' Sn−1 = A. Then;

X
/
A = Dn/

∂Dn = Sn

Then we have the following sequence;

H̃n(Dn)→ H̃n(Sn)→ H̃n−1(Dn)→ H̃n−1(Dn)→ H̃n−1(Sn)→ H̃n−2(Sn−1)→ H̃n−2(Dn)→ . . .

Which becomes;
(0)→ Z→ Z→ (0)→ (0)→ (0)→ (0)→ . . .

4.4 Relative Homology

Let A ⊂ X be a subspace then we can define,
Definition 34. Complex of relative n-chains C.(X,A) be;

Cn(X,A) = CnX
/
CnA

with the obvious induced boundary map of ∂ : Cn+1(X,A)→ Cn(X,A).

Definition 35. Homology of the pair X,A;

Hn(X,A) := HnC.(X,A),
{c ∈ CnX|∂C ∈ Cn(A)}
{∂Cn+1X + CnA}

Figure 4.8 is a way of visualising the homology X,A.

There is an easy functoriality. Let A ⊂ X be a subspace and f : X → Y is a continuous map
such that f(A) ⊂ B, then;

f∗ : Hn(X,A)→ Hn(X,B)

Then we get a Homotopy Invariance. Let f : X → Y , g : X → Y as above and f ∼ g through
the following map.

F : X × I → Y

and let ft : X → Y be defined by fT (x) = F (x, t) where F is a homotopy through the maps of
pairs and ft(A) ⊂ B for all t. This gives us f0 = f , f1 = y.
Then it follows that;

f∗ = g∗ : Hn(X,A)→ Hn(Y,B)

We then have two exact sequences, namely;
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Figure 4.8: Relative Homology of X and A

• The sequence of the pair

· · · → HnA→ HnX → Hn(X,A)
δ→ Hn−1(A)→ . . .

• The sequence of the triple

· · · → Hn(A,B)→ Hn(X,B)→ Hn(X,A)
δ→ Hn−1(A,B)→ . . .

Exercise: fill out the details using the arguments similar to last time.

4.4.1 Barycentric Subdivision

We now provide the technical set-up required for a proof of the Excision Theorem which will be
stated later.
Definition 36. Let X be a topological space U = {Ui : i ∈ I} is a collection of subspaces of X
such that {Ů : i ∈ I} forms an open cover of X
Set CUn (X) = {chains

∑
niσi in Cn(X)|σi has image inside one of the Ui for each i} So

Cn(X)
∂−→ Cn−1(X)

CUn (X)
∂−→ CUn−1(X)

Thus (CU· (X), ∂) is a chain complex, in fact a subcomplex of (C·(X), ∂)

A philosophical point to be made here is that, when computing homology groups, we can insist
that our simplices are small.

Proposition 6. The inclusion i : (CUn , ∂) → (Cn, ∂) is a chain homotopy equivalence. In other
words ∃ a chain map ρ : Cn(X) → CUn such that ρ ◦ i and i ◦ ρ are both chain homotopic to the
identity. Thus i induces isomorphism:

HUn (X) ' Hn(X) ∀n

We will prove the proposition above using barycentric subdivision.
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Barycentric Subdivision of Simplices

Example 34. We give examples of the barymetric subdivision of standard 1 simplex and 2 sim-
plex.

The aim of barymetric subdivision is to baricentrically subdivide the boundary and then add the
barycentre.
The barycentre of [v0 . . . .vn] is

1

n+ 1
v0 +

1

n+ 1
v1 + · · ·+ 1

n+ 1
vn

The barycentric subdivision of [v0 . . . .vn] is the sum of simplices [b, w0 . . . .wn−1] where b is
the barycentre and [w0 . . . .wn−1] is a simplex in the barycentric subdivision of [v0 . . . v̂i . . . vn] for
some i. In order to ensure that this inductive definition is well defined we require that the barycen-
tric subdivision of [v0] is [v0].

The vertices of barycentric subdivision of [v0 . . . vn] are; pick {i0, . . . , ik} ⊂ {0, . . . , n}, pick
k + 1 of the vi’s then

1

k + 1
vi0 +

1

k + 1
vi1 + · · ·+ 1

k + 1
vik

is a vertex of barycentric subdivision.

Barycentric subdivision makes simplices smaller. Recall the following definition of diameter of a
∆-complex

diam(∆) = sup d(x, y), ∆ ⊆ Rn, d(x, y) = |x− y|

Lemma 4.
diam(∆) = max|vi − vj |,∆ = [v0, . . . , vn]
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Proof. For v ∈ ∆, v =
∑n
i=0 tivi. So for all w ∈ ∆.

[h!]d(w, v) = |w − v| = |w −
n∑
i=0

tivi|

= |
n∑
i=0

ti(w − vi)|

=

n∑
i=0

ti|w − vi|

≤ max
j
|w − vj |

Then apply this again decomposing w.

This lemma is useful to prove the following proposition.
Proposition 7. Let ∆′ be a simplex in the barycentric subdivision of ∆ then;

diam(∆′) ≤
(

n

n+ 1

)
diam(∆)

Proof. We prove this by induction on n. The base case, when n = 0 holds and so. Assume that
this is true for n− 1. Let b =barycenter of ∆. Then we have two cases:

• If b is not a vertex of ∆′ then ∆′ lies in ∂(∆) and so we are done by induction.

• Suppose b is a vertex of ∆′. Then; Then ∆′ = [bw0 . . . wn−1], where [w0 . . . wn−1] is a sim-

plex in the barycentric subdivision of the face, [v0, . . . , v̂i, . . . , vn] of ∆.

Then the line through vi and b meets [v0 . . . v̂i . . . vn] in the barycenter bi of [v0 . . . v̂i . . . vn].

Where vi = 0v0 + · · · + 0vi−1 + vi + 0vi+1 + · · · + 0vn and b = 1
n+1v0 + · · · + 1

n+1vi−1 +
1

n+1vi + · · ·+ 1
n+1vn. Then adding these and choosing k gives;

b =
1

n+ 1
vi +

n

n+ 1
bi

So,
|b− vi| =

n

n+ 1
|vi − bi| ≤

n

n+ 1
diam(∆)
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And so it follows;
diam(∆′) = max|wi − wj | ≤

n

n+ 1
diam(∆)

where wi, wj are vertices of ∆.

Barycentric Subdivision of Linear Chains

The goal now is to construct a function p : Cn(X)→ Cun(X) that takes barycentric subdivision of
chains.

Step 1: Suppose Y = convex subset of Rn. Then we can consider;

LCn(Y ) = subcomplex in Cn(Y ) consisting of linear chains σ : ∆→ Y

We have that;

Since a linear map out of a subset is a linear map. So (LC.(Y ), ∂) is a subcomplex of (C.(Y ), ∂).
Write σ : [v0, . . . , vn] → Y a linear chain as [w0 . . . wn] where wi = σ(vi). This determines σ
uniquely.
Definition 37. Given b ∈ Y , then there exists a cone operator B : LCn(Y ) → LCn+1(Y ) that
maps [w0, . . . , wn] 7→ [bw0, . . . , wn]

Lemma 5.
∂b([w0, . . . , wn]) = [w0, . . . , wn]− b(∂[w0, . . . , wn])

Proof. This is proven by algebraic manipulation.

Proposition 8 (Key Properties). • S∂ = ∂S

• S ∼ 1
L̃Cn

Y
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Proof. (a) Observe that, for λ ∈ L̃CnY , λ : ∆n → Y is the generator.

∂S(λ) = ∂bλS(∂λ) = S(∂λ)− bλS(∂λ)

= S∂λ− bλ∂S(∂λ)

= S∂λ− bλS(∂ ◦ ∂λ)

= S∂λ

(b) We define T : L̃CnY → L̃Cn+1Y to be the homotopy from S to 1. Then we get; Then since

. . . L̃C2 L̃C1 L̃C0 L̃C−1 0

. . . L̃C2 L̃C1 L̃C0 L̃C−1 0

T−1 = 0 and for λ : ∆n → Y , it is possible to define;

Tλ := bλ(λ− T∂λ)

We now verify that ∂T + T∂ = 1− S on L̃CnY by induction on n. For λ : ∆n → Y ;

∂T (λ) = ∂(bλ(λ− T∂λ)) = λ− T∂λ− bλ∂(λ− T∂λ)

Using that ∂b+ b∂ = 1 and that ∂λ ∈ L̃Cn−2Y . Then;

= λ− T∂λ− bλ(∂λ− ∂λ− ∂T (∂λ))

= λ− T∂λ− bλ(∂λ− ∂λ+ S(∂λ) + T (∂∂λ)

= λ− T∂λ− S(λ)

Using that S(λ) = bλ(S(∂λ)). Then it follows that;

∂Tλ+ T∂λ = λ− S(λ)

Example 35. Let λ = [v0, v1] : ∆1 → Y . Then;

Sλ = bλS(∂λ) = bλS([v1]− [v0])

= bλ([v1]− [v0])

= [bλv1]− [bλv0]

This can be seen graphically as;
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Barycentric Subdivision on Cn(X)

We now work with LCn not L̃CnY , and we have that S : LCn → LCnY and T : LCnY → LCn+11.
And, ∂T + T∂ = 1− S. We define the operatores;

S : CnX → CnX; Sσ = σ#S∆n

And,
T : CnX → Cn+1X; Tσ#

T∆n

Where we make the following notes on the notation. F : Z → W implies that f# : CnZ → CnW ,
where f# = f ◦ σ : ∆n → X. We can then think of

∆n ∈ LCn∆n ⊂ Cn∆n
σ∗→ CnX

. And also that
S∆n ∈ LCn∆n

σ#→
Similarly to the previous cases we have the following key properties.
Lemma 6. 1. S∂ = ∂S

2. ∂T + T∂ = 1− S

Where these are on CnX.

Proof. (1), for σ : ∆n → X,

∂Sσ = ∂σ#S∆n

= σ#∂S∆n

= σ#S∂∆n

= σ#

∑
(−1)i∆i

n

= σ#

∑
(−1)iS∆i

n

=
∑

(−1)iS(σ|∆i
n)

= S
∑

(−1)iσ|∆i
n

= S∂(σ)

(2) We follow a similar argument.

∂T (σ) =∂σ#T (∆n)

= σ#∂T (∆n)

= σ#(∆n − S∆n − T∂∆n)

= σ − Sσ − T∂σ

Iterated Subdivision

We consider the case where a simplex is sudivides more than once. Moreover we show that the
following operator is a chain homotopy from 1 to Sn.

Dn =
∑

0≤i≤n

TSi

That is that ∂Dn +Dn∂ = 1− Sn.

56



Proof.

∂Dm +Dm∂ =
∑

0≤i≤n

(∂TSi + TSi∂)

=
∑

0≤i≤n

(∂TSi + T∂Si∂)

=
∑

0≤i≤n

(∂T + ∂T )Si

=
∑

0≤i≤n

(1− S)Si = 1− Sn

Recall the Lebesque Covering Lemma.
Lemma 7. Let M be a compact metric space and V = {Vj} is an open cover on M . Then there
exists ε such that for all B(X, ε) in M is contained in some Vj .

We apply this result to M = ∆n, where V = {σ−1(Ui)|Ui ∈ U} and use that barycentric subdivi-
sion reduces the diameter of a simplex.
Then by compactness of ∆n it follows that;

∀σ : ∆n → X, ∃n(σ) : Sn(σ)(σ) ∈ CUnX

for each σ. Then let n(σ) be the smallest such power.

Definition 38. We define D : CnX → Cn+1X on σ by Dσ = Dn(σ)σ

Then we get that;
∂Dn(σ) +Dn(σ) = 1− Sn(σ)

where (∂D +D∂)σ = ∂Dn(σ)σ +D∂σ = σ − [Sn(σ)σ +Dn(σ)∂σ −D∂σ].
We define;

ρ : CnX → CnX to be ρ(σ) = Sn(σ)σ +Dn(σ)∂σ −D∂σ

And we claim that;
(Dn(S)−D)(∂σ) ∈ CunX

To prove this recall that;
∂σ =

∑
i

(−1)iσi; m(σi) ≤ m(σ)

Then from this it follows that;

Dn(σ)σj =
∑

0≤j≤m(σ)

TSi

And,

Dσj =

TSi∑
0≤i≤m(σj)

Then together these imply that;

(Dm(σ) −D)σj =
∑
m(σj)

≤ i ≤ m(σ)TSiσj ∈ CUn (X)

for some n as required.
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Next we claim that ρ is a chain map. This is proven using the result that ∂D +D∂ = 1− ρ.
Then;

∂ρσ = ∂σ − ∂D∂σ −D∂2σ = ρ∂σ

So now we have established the chain map ρ : CnX → CUnX for all n. It then follows immediately
that

ρ ◦ σ = idCUnX and ∂D +D∂ = 1− iρ
We now move on to stating and proving the Excision Theorem.

4.4.2 The Excision Theorem

Theorem 18 (Excision theorem). Suppose Z ⊂ A ⊂ X, and Z̄ ∈ Å then, for all n;

Hn(X,A) = Hn(X\Z,A\Z)

Figure 4.9: A graphical visualisation of the Excision Theorem

Proof. We aim to apply the results above relating to Barycentric subdivision to the case when
U = {A,B}. We will write Cn(A+B) = CUnX then we get for all n;

Cn(A+B) ↪→ CnX

is a homotopy equivalence. And so i induces the following isomorphism between the homology
groups for all n;

i : Cn(A+B)
/
CnA → CnX

/
CnA

The natural chain map CnB → Cn(A+B) induces a chain map for all n;

CnB
/
Cn(A+B) → Cn(A+B)

/
CnA

Moreover, this is an isomorphism since;

CnB
/
Cn(A+B) = ⊕

σ:∆→B
Z[σ]

σ(∆n)*A

And;
Cn(A+B)

/
Cn(A) =

⊕
σ:∆→B

Z[σ]

σ(∆n)*A
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And the map sends a basis 1 to 1 to a basis and so;

Hn(B,A ∩B)
'→ Hn(X,A)

4.5 The Equivalence of Simplicial and Singular Homology

Lemma 8 (5-lemma). Suppose given a commutative diagram (of abelian group) with exact rows:

A B C D E

A′ B′ C ′ D′ E′

i j k l

α α α α α

i j k l

α, β, δ, ε isomorphism =⇒ γ isomorphism

1. β, δ onto, ε injective =⇒ γ onto

2. β, γ injective, α onto =⇒ γ injective

Proof. follow your none diagram chase. Let’s prove 2:
Suppose γ(x) = 0
0 = k′γ(x) = δk(x) δ injective =⇒ k(x) = 0 =⇒ x = j(y)
0 = γ(x) = γ ◦ j(y) = j′β(y) so β(y) ∈ ker(j′) = Im(i′) so ∃z ∈ A′ such that i(z) = β(y)
α onto =⇒ z = α(ω) from some ω ∈ A
βi(ω) = i′α(ω) = β(y) =⇒ iω − y ∈ ker(β)
β injective =⇒ iω = y but x = ju = jiω = 0 so x = 0 i.e γ is injective.

Theorem 19. (X,A)∆-complex point. The natural chain map C∆
n (X,A) → Cn(X,A) induces

isomorphism H∆
n (X,A)→ Hn(X,A) (for A = ∅ we get H∆

n X ' Hn)

Proof. Look at long exact sequence of the pair Xk, Xk−1

H∆
n (Xk, Xk−1) H∆

n (Xk−1) H∆
n (Xk) H∆

n (Xk, Xk−1) H∆
n (Xk−1)

Hn(Xk, Xk−1) Hn(Xk−1) Hn(Xk) Hn(Xk, Xk−1) Hn(Xk−1)

δ δ

' '

δ δ

By 5-lemma H∆
n Xk

'−→ HnXk In general, for a ∆−complex, the continuos map:(⊔
∆k(α),

⊔
∂∆k(α)

)
tα−−→ (Xk, Xk+1)

induces:

⊔
∆k(α)

/⊔
∂∆k(α) ' Xk

/
Xk−1
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=⇒ = Hn(Xk

/
Xk−1

) = Hn(Xk

/
Xk−1

) = Hn(t∆k(α)
/
t∂∆k(α) )

=
⊕

Hn(∆k(α), ∂∆k(α))

=

{⊕
Z[∆k(α)] if n = k

0 otherwise

We have:

C∆
n (Xk, Xk−1) =

{⊕
Zen(α)] if n = k

0 otherwise

To finish:

1. Suppose X is finite dimensional then X = Xk for some k & by above H∆
n = H∆Xk =

HnXk = HnX

2. X infinite dimensional

4.6 Degree of a map

Definition 39. For a map f : Sn → Sn(n ≥ 1), the induced map f∗Hn(Sn)toHn(Sn) is a homo-
morphism from an infinite cyclic group to itself and so must be of the form f∗(x) = dx for some
integer d depending only on f. This integer is called the degree of f .
Proposition 9. Here some properties of d:

1. deg1 = 1

2. degf = 0 if f is not surjective. If we choose a point x ∈ Sn\f(Sn) the f can be factored as
a composition

Sn → Sn\{x} ↪−→ Sn

Hn(Sn\{x}) = 0 since the space Sn\{x} is contractible. Therefore we have:

Hn(Sn)→ (0)→ Hn(Sn)

Therefore f∗ = 0

3. If f ' g =⇒ deg(f) = deg(g)

4. deg(f ◦ g) = deg(f) · deg(g)

5. Let Sn = {v|‖v‖ = 1} ⊂ Rn+1

Let τ : Sn → Sn be the restricting of (x0, . . . , xn) 7→ (x0, . . . , xn−1,−xn) then deg(τ) = −1.
This is a ∆-complex structure on Sn with two dimensional cells Sn = ∆n(1) ∪∆n(2)

C∆
· : 0→ Z[∆n(1)]⊕ Z[∆n(2)]

∂−→
n⊕
i=0

Z[∆i
n(1)]→

⊕
Z→ . . .

Hn(Sn) = H∆
n (Sn = ker(∂) = Z[∆(1)−∆(2)]

τ(∆n(1)−∆n(2)) = [∆n(2)−∆n(1)] = [∆n(1)−∆n(2)]

6. Let a : Sn → Sn be the antipodal map then deg(a) = (−1)n+1 (a = τ0τ1τ2 . . . τn =⇒
deg(a) = (−1)n+1)
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7. f has no fixed points =⇒ deg(f) = (−1)n+1

If f has no fixed point then f ∼ a (the antipodal map). The segment (in Rn+1) [f(x)∗ = −x]
does not contain 0̄ ∈ Rn+1

[0, 1] 3 t→ (1− t)f(x)− tx
‖(1− t)f(x)− tx‖

∈ Sn

is a homotpy from f .

4.7 Cellular Homology

We recall that a CW complex is built inductively as ∪Xk (the k-skeleton of X). Where;

Xk = Xk t
tφα

Dk(α)

and φα : ∂Dk(α) = Sn−1(α)→ Xk−1. The following lemma is useful in calculating the homology
groups.

Lemma 9. The pair (Xk, Xk−1) is a good pair.

Proof. Consider the following ’proof by picture’ in figure ??

Figure 4.10: Xk, Xk−1 is a good pair

Lemma 10.

1. Hn(Xk, Xk−1) =

{
(0) if n 6= k⊕

Z[Dn(α)] if n = k

2. Hn(Xk) = (0) for n > k

3. i : Xk ⊂ X induces i∗ : Hn(Xk) = Hn(X) for n < k

Proof.

1. Hn(Xk, Xk−1) = H̃n(Xk/Xk−1) = H̃n(∨Sn(α))

2. Hn+1(Xk, Xk−1)→ Hn(Xk−1)→ Hn(Xk)→ Hn(Xk, Xk−1)

• If n 6= k, k − 1 then by 1 the outer 2 groups are (0).

• If n > k: Hn(Xk−1) = · · · = Hn = (0)

61



3. If n < k, Hn = Hn(Xk+1) = · · · = Hn(X) if X is finite dimensional. If X is infinite dimen-
sional don’t worry about it. (Just work as for ∆-complexes, work with C0X a chain with
compact support in X and so it meets finitely many cells therefore it is contained in Xk for
some finite k)

. . . Hn+1(Xn+1, Xn) Hn(Xn, Xn−1) Hn−1(Xn−1, Xn−2) . . .

Hn(Xn)

0 Hn(Xn+1) = HnX

Hn−1(Xn−1)

0 Hn+1(Xn) = Hn(X)

0

0

δn
in−1

Then we have that; Ccwn = Hn(Xn, Xn−1), dn = in−1 ◦ δn

Remark 4. It is a complex and Hn(Ccw· ·X) = HnX

Proof. Exercise: a little diagram chase

There are advantages to this theory, namely Ccw· can be considered to be very small but we
however need to compute dn. This is only a superficial disadvantage since there are methods of
computing such a boundary map.

So to overcome this disadvantage we need an efficient way of computing dn:
When n = 1H1(X1, X0)→ H0(X0) is pretty easy.
And when n ≥ 1, we use the result of the following proposition known as the ’cellular boundary
formula’. This makes use of the concept of ’degree’ of a map introduced earlier.

Proposition 10. The Cellular Boundary Formula:

dn(Dn(α))) =
∑
β

dαβDn−1(β)

where

dαβ = deg

(
Sn(α) = ∂Dn(α)

φα−−→ Xn−1 → Xn−1

/
Xn−1\Dn−1(β) = Sn−1(β)

)
This is often just expressed as;

dαβ = deg(∆αβ)

Where
∆αβS

n(α) = ∂Dn(α)
φα−−→ Xn−1 → Xn−1

/
Xn−1\Dn−1(β) = Sn−1(β)
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Figure 4.11: A proof of the cellular boundary formula

Proof. A graphical view of what is happening in the proof can be seen in figure 4.11.

Denote by φα : (Dn(α), ∂Dn(α)) → (Xn, Xn−1) the obvious continuous map. Also denote by
Xn−1

q−→ Xn−1

/
Xn−2

qβ−→ Sn−1(β), the obvious collapsing map.

Then the proof of the cellular boundary formula comes from a diagram chase on the following
commutative diagram, where we assume that n > 1.

Z ' Hn(Dn(α), ∂Dn(α)) Hn−1(∂Dn(α)) Hn−1(Sn−1(β))

⊕Z[Dn(α)] ' Hn(Xn, Xn−1) Hn−1(Xn−1) Hn−1(Xn−1

/
Xn−2

)

Hn−1(Xn−1, Xn−2)) Hn−1

(
Xn−1

/
Xn−2

, Xn−2

/
Xn−1

)

' ∆αβ∗

δn q∗

φα∗ φα∗
qβ∗

∆n−1∗ 'dn

'

Where dn(α, β) = dαβ , follows from the commutativity of the diagram.

We now consider techniques for calculations with Cellular Homology.

Proposition 11. Given f : Sn → Sn suppose ∃y ∈ S∗ such that f−1 = {x1, . . . , xn} is finite. Let
V 3 y be a small open disk and Ui 3 xi small disks f(Ui) ⊂ V =⇒ f : Ui, Ui {xi} → V, V {y}
induces f∗ : H∗(Ui, Ui {xi}) → (V, V {y}) therefore f∗X = diX and di = degxif = local degree
of f at xi

Proof. Stare long enough at the following commutative diagram:
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Hn(Ui, Ui {xi}) Hn(V, V {y})

Hn(Sn, Sn)\{xi}) Hn(Sn, Sn\f−1(x)) Hn(Sn, Sn\{y})

Hn(Sn) Hn(Sn)

di

' ki

pi

f∗

'

' j

d

'

By excision,
Hn(Sn, Sn f−1(y)) =

⊕
Hn(Ui, Ui {xi})

Therefore we have:

1. By excision Hn(Sn, Sn\f−1(y)) =
⊕

i=0,...,n

Hn(Ui, Ui\{xi}) =
⊕n

i=1 Z

2. By Z of upper square f∗ki(1) = di

3. J(1) =

n times︷ ︸︸ ︷
(1, 1, . . . , 1) =

∑n
i=1 k(1) indeed pij(1) = 1

4. By commutativity of the lower square d = f∗J(1) = f∗(
∑
ki(1)) =

∑n
i=1 di

Remark 5. Let x ∈ Sn and x ∈ U ⊂ Sn a small disk. Then:

HnS
n ' Hn(Sn, Sn {x}) = Hn(U,U {x})

by excision
Example 36.

1. there are f : Sn → Sn of any given degree of Z. Let A = Sn (t of k disjoint disks)

Sn → Sn/A = VkS
n → VkS

n → Sn

Therefore by proposition above deff = (k − h)− h

2. f : S1 3 z 7→ zd ∈ S1 degree d.

3. f : C → C a polynomial of degree d implies f̃ : S2 → S2 where S2 = C ∪ {∞} such that
f̃(∞) =∞ and degf̃ = d

We now consider the computation of the cellular homology groups for a few standard exam-
ples.
Example 37. Firstly, consider the standard orientated surface of genus g, Σg =
Then as we have done before we can impose a CW complex on this surface such that there are
1 0-cell, 2g 1-cells and 1 2-cell.

We then get that, C2 = Z, C1 = Z2g, C0 = Z, which form the following exact sequence;

Z
0−→ Z2g 0−→ Z

Where by the Cellular Boundary Formula d2 = 0 and so;

H0(Σg) = Z, H1(Σg) = Z2g, H2(Σg) = Z
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Figure 4.12: A CW structure on Σg

Figure 4.13: A CW complex on a non-orientable surface of genus g

Example 38. We now consider the case of a non-orientated surface of genus g. The cellular
decomposition in figure 4.13, gives us 1 0-cell, g 1-cells and 1 2-cell. Therefore we have that;

C2 = Z = C0, C1 = Zg

Which fits into the following sequence,

Z
f→ Zg

.0→ Z

Where f : 1 7→ (2, 2, . . . , 2).
Therefore it follows that;

H2 ' (0), H1 ' g−1 ⊕ Z
/

2Z , H0 ' Z

4.7.1 Cellular Homology of Pn(R)

Throughout this argument we will be using two equivalent definitions of the projective space at
the same time. These are

Pn(R) = Sn
/
x ∼ −x = Dn ∪

φ
Pn−1(R)

where φ : ∂Dn = Sn−1 → Pn−1(R). This gives us the CW structure and inductively we get that
φn−1 : Sn−1 → Pn−1(R) = Xn−1, which is the n− 1 skeleton of X = Pn(R). In order to establish
the cellular homology groups, we need to calculate the boundary maps in CCWn . Recall from the
cellular boundary formula that;

dn+1 = deg(Sn → Pn(R)→ Pn(R)
/
Xn−1

' Sn
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Figure 4.14: A CW structure of the projective real plane

Call the map from Sn → Sn given above fn. Then by the degree formula it is sufficient to consider
the the local degrees at N,S, where f−1

n (N) = {N,S}.

To compute the local degree at N , we consider;

Hn(Sn) ' Hn(D+
n , D

+
n \{N})

id∗→ Hn(Dn
/
∂Dn

, Dn

/
∂DN\N ) = Hn(Sn)

And this implies that degN (fn) = 1.

Similarly we compute the local degree at S, where we observe the above sequence is obtained
by first composing with the antipodal map which has degree (−1)n+1. Therefore degS(fn) =
(−1)n+1. This can be seen in figure 4.15.

Figure 4.15: A picture of what is going on

Where on D+
n ⊂ Sn, fn = q ◦ id where q : Dn → Dn

/
∂Dn

' Sn. And on D−n ⊂ Sn, Fn = q ◦ id ◦a
where a : D−n → D+

n .

Therefore;
dn+1 = degN (fn) + degS(fn) = 1 + (−1)n+1

Hence the boundary map is either the zero map or multiplication by 2. This we get the following
cellular chain complex for Pn(R).

0→ Z
2→ Z

0→ . . .
2→ Z

0→ Z→ 0

Hence it follows that;

HkPn(R) =


Z for k = 0, k = nodd

Z2 for k odd, 0 < k < n

0 otherwise
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Cellular Homology of the 3d torus

The 3d torus is characterised by S1 × S1 × S2. And so this has the CW complex of; Hence the

following sequence is produced;

Z
d3=0→ Z3 d2=0→ Z3 d1=0→ Z

Where the boundary maps d1 = 0 and d2 = 0 as for the torus. But we claim that d3 = 0, we
attach the two skeleton by imagining the cube above on the surface of a sphere. And since the
local degrees are either +1 or -1, it follows that d3 = 0.

Therefore the homology groups are as follows;

H0 = Z, H1 = Z3, H2 = Z3, H3 = Z3

4.8 Mayer-Vietoris Sequences

We state and prove the existence of Mayer-Vietoris sequences. These can be thought of as
”Van-Kampen for homology groups”.

Theorem 20. Let A,B ⊂ X such that X =
◦
A ∪

◦
B then there exists an exact sequence of;

Hn(A ∩B)
φ→ Hn(A)⊕Hn(B)

ψ→ Hn(X)
δ→ Hn−1(A ∩B)→ . . .

Where φ(x) = (i1∗x,−i2∗) and ψ(y, z) = j1∗y + j2∗z

Then;

Proof. We have that;
Cn(A+B) =

⊕
σ:∆n→X,σ(∆n)⊂A∪B

Z[σ]

Recall that we already know that Cn(A + B) ⊂ Cn(X) is a homotopy equivalence of complexes.
(We used this in excision). And it is clear that we have an exact sequence of complexes;

(0)→ Cn(A ∩B)
α→ Cn(A)⊕ Cn()

β→ Cb(A+B)→ (0)

Where α(x) = (x,−x) and β(y, z) = y + z.

This gives us the Mayer-Vietoris Sequence.
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It is often useful to be able to construct the map δ : HnX → Hn−1(A ∩ B). For this, suppose
z = x+ y ∈ Zn(A+B) with x ∈ Cn(A) and y ∈ Cn(B). That is;

∂z = ∂x+ ∂y = 0 ∈ Cn−1(A+B)

and
∂x = −∂y ∈ Cn−1(A ∩B)

Then it follows that δ[z] = [∂x] = [−∂y]. We now consider an example of using the Mayer-Vietoris

Sequence.
Example 39. Let K be the klein bottle which can be characterised as K = A∪B where A and B
are both Möbius strips joined at their boundaries with a suitable overlap. Then A,B and A∩B are
homotopically equivalent to circles, so H1(A) = H1(A ∩ B) = H1(B) ' Z. Hence the sequence
becomes;

0→ H2(K)→ H1(A ∩B)
φ→ H1(A)⊕H2(B)→ H1(K)→ 0

Now consider the map φ : Z → Z ⊕ Z, is a 2-to-1 map, it therefore has degree 2. And since this
map is injective it follows that H2(K) = 0 and H1(K) = Z ⊕ Z2. Moreover all higher homology
groups of K are zero from the earlier part of the Mayer-Vietrois sequence.

Exercise: Trying calculating the homology groups this way for a surface of genus 2.

4.9 The Euler Characteristic

For a CW comples the atextbfEuler Characteristic, χ(X) is defined to be the sum
∑
n(−1)ncn

where cn is the number of n cells of X. However this result can be generalised for homology
groups as follows. IF H is a finitely generated abelian group then H ' Z ⊕ T where T is a finite
group and r = rank(H). Then we can define the Euler characteristic as;
Definition 40. Let C. be a complex of abelian groups with finitely generate homology. Then;

e =

∞∑
i=0

rkHi
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Note that riHi is also known as the ith Betti number
Lemma 11. Suppose that Ci = (0) for i ∈ [0, n] and all Ci are finitely generated then;

e =
∑

(−1)irkCi

Proof. This was done in a homework assignment for vector spaces however this more general
case is not harder.

This lemma becomes useful when X is a CW complex of finite dimension with finitely many cells
in each dimension since;

CCWi = Hi(Xi, Xi−1) =
⊕
α

Z[Di(α)]

And so;

e(X) =

∞∑
i=0

(−1)i#{i− cells} =

∞∑
i=0

(−1)irkHiX

This is a homotopy invariant.
Example 40. Consider the CW structures on S2. Then;
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4.10 Comparison between π1 and H1.

Proposition 12. There is a (unique) abelian groupGab (the abelianization ofG) & homomorphism
G→ Gab characterised by the universal property:
∀ abelian group A & homomorphism f : G → A there ∃! homomorphism g : Gab → A such that
the following diagram commutes:

Proof. In two steps: construction of Gab, prove that the construction satisfies the universal prop-
erty.

1. let [G,G] E G be the normal subgroup ofG generated by all commutators [a, b] = aba−1b−1 ∈
G of 2 elements a, b ∈ G:

Gab = G
/

[G,G]

2. f : G→ A abelian =⇒ f([G,G]) = {e} =⇒ [G,G] < N = ker(f)
=⇒ f : G→ A by elementary algebra.

Theorem 21. X path connected, x0 ∈ X =⇒ π1(X,x0)ab = H1X

Proof. We define a group homomorphism φ : π1(X,x0)toH1X. We consider maps f : ∆
[v0,v1]
1 →

X and we think of them in two ways: either a path f : I → X from f(v0) to f(v1) (and sometimes
a loop) or a element of C1X a 1-dimensional chain in X. We establish the following:

1. f constant =⇒ f ∼ 0

2. f ' g =⇒ f ∼ g

3. for composable paths f · g ∼ f + g

4. f̄ ∼ −f

we now prove the 4 facts above:

1. f(∆1) = x ∈ X
C1X 3 f = f#(x) where x ∈ C1{pt} & f# : C·{pt} → C·X is a chain map.

2. f ' g this means ∃ homotopy ∆1 × I → X
Goal: to manufacture a singular 2-chain y ∈ C2X such that ∂Y = f − g
we do that as in the picture.
σ1 = [v0v1w1] σ2 = [v0w0w1]
Y = [F : σ1 → X]− [F : σ2 → X]
∂Y = [F : [v1, w1]→ X]− [F : [v0w1]→ X] + [F : [v0v1]→ X]− [F : [w0w1]→ X]

3. Construct F : ∆2 → X as F = f · g ◦ p
where f · [v0v2] → X is the product of the two paths & p:∆2 → [v0v2] is the orthogonal
projection of ∆2 to [v0v2] (mapping in particular v1 to the midpoint of [v1v2]) [F : ∆2 → X] ∈
C2X ∂F = g − f · g + f ie f · g ∼ f + g

4. Apply 3 to g = f̄
f f̄ ∼ f + f̄
also by 2 ff̄ ∼ e =⇒ f · f̄ ∼ 0 =⇒ 0 ∼ ff̄ ∼ f + f̄ ie 4

We do get indeed a group homomorphism h : π1(X,x0)→ H1X
We claim h is surjective:
take γ =

∑
niσi ∈ Z1X σ1 : ∆1 → X we may assume n = ±1 using 4. I may assume all ni = +1

if σi appears in γ with coefficient ni = −1 I use −σi ∼ +σ̄i. Using 3 I can make daisy chain of σ1

and assume that all σi are loops (not necessarily at x0. σi starts at pi ∈ X and ends at pi+1 ∈ X
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∂σ =
∑
∂σi =

∑
(pi − pi+1) = 0

we may assume there is only one loop γ = σ (not necessarily based at x0)
by 3 and 4 α · σ · ᾱ ∼ α+ σ − α = σ therefore h is surjective.
Suppose fL∆1 → X is a loop at x0 (in part f ∈ Z1X) then if h(f) = 0 in H1 then f ∈ [−π, π]. I
can write σ as a word w in π1 where if γ appears somewhere in w, then γ−1 also appears some-
where else in w. There exists a 2-chain σ =

∑
niσi with ∂σ = f by deconstructing σ if necessary

may assume all ni are equal to ni = ±1. In fact we may assume all ni = ±1

∂σ = σ[v1v2]− σ[v0v2] + σ[v0v1]

We have there σi : ∆2(i)→ X. Assemble all these simplices ∆2(i) int oa 2d ∆-complex K

we know
f = ∂(

∑
σi) = σi,j(−1)jτj(i)

group all but one of τj(i) into pairs where the one that’s left has τj(i) = f

I use all my ∆2(i) to asssemble a ∆-complex K with ∂K = f
If σ(K0) = x0 then we are done
γabcb−1a−1c−1 ' σ =⇒ γ = cabc−1b−1a−1 w in π1(X,x0)
We want to construct a homotpy F : K × I → X rel γ (γ ⊂ K)
F (y, 0) = σ
F (y, 1) = σ−1 and σ(k0) = x0

It is easy to contruct F on k0. We want to extend the homotopy.

Definition 41. This is the homotopy extension property of a pair Y,A , A ⊂ Y closed.
f0 : Y → X
F : A× I → X
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